Analysis, University of Groningen H.M. Goossens

Some basis:

PROOF BY CONTRADICTION: proof opposite statement false, therefore original statement true.

Sets:

SET: collection of ELEMENTS: objects in a set.

A& B sets:
Name Notation Meaning
reA x an element of A
& A xnot an elemnt of A
UNION AUB x € Aand/orz € B
INTERSECTION ANB r € Aand € B
EMPTY SET: 0 Set contains no element.
E and S are DISJOINT ENnS=19
COMPLEMENT OF A | A°={z €R:x ¢ A} | the set of all elements in R, but not in A
SUBSET ACB All elements in A are also elements in B
SUPSET BDA B contains all the elements of A
A=RB WhenA C Band BC A
De Morgan’s Law (AN B)¢ = A°U B° Proof? Exercise 1.2.5
(AUB)¢ = A°n B°

A1 D Ay D A3 D ... all elements of A also elements of A; and so on (so A,11 elements of A,,)

Functions and real numbers:

A& B are sets,a, breal numbers.

Definition 1.2.3: Functions:

FuNcTION: from A to B maps each element x € A with a single element of B

Notation: f: A — B givenx € A and expression f(x) represents element B assiociate withz by f
DoMAIN: A&RANGE: subset of B given by:{y € B : y = f(x) for somex € A}

Theorem 1.2.6:

a,bequal iff for every real numbere > 0, it follows|a — b| < &

Proor:

(1):Ifa = bthenja —b| < ¢

|a — b| = 0and becausee > 0we know |a — b| < &

(2): Ifja — b| < ethena =10

Assumea # bsoeg = |a — b| > 0 must be true, which is the case becausee > 0
But |a — b|] < g9 and |a — b| = €g can not be both true.

Therefore a # bunacceptable=a = b

INDUCTION:
IfScN with: 1€ S neNandneS n+1¢€S thenS=N
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Lecture 1:

Lemma and proof:

|z| = max{x, —x}
zifz >0

DEFINITION OF AN ABSOLUTE VALUE: |z| = :
—zifxr <0

PROOF:
r>0=>-1<0=—z<z=max{—-z,z}=2x=|z
r<0=-2>0=—z>zr=max—z,z=—r = |7

Algebraic properties:

Name Rule Proof:

x Y Ty conclusion
>0 ]y>0]ay>0 |lzy| = zy = |z[ - |y
Product rule | |zy| = |z|- |y x>0 |y<0]|zy<0 lzy| = z(—y) = |=| - |y]
<0 ]y>0]ay<0| |zyl=(—z)y=|z| |y
v<0]y<0]ay>0] oyl =(—2)(=y) = |||y

€T

Y

— =

= Tl Proof by yourself.

Quotient rule

wherey # 0 it is sufficient to show that ’%‘ = ﬁ
=l @ =G-al=—d
Inequalities:
Name Rule Proof
2] <a < max{—z,z}<a
—x < <
Lemma 2 | |z|<ae —a<z<a < zscandzza
& x> —aandz <a
& —a<zx<a
r+y < x| +y <zl +1yl
Triangle |z +yl < [z + |y| —r—y < | —y < a4yl
lz+yl = max{e+y,—az-y} < |z[+y
inequality
lz| =]z —y+yl < |z =yl + [yl
|z = [y] < |z =yl
Reverse | ||z| — |y[| <[z —y| ly| — || < ly — x| = |z -yl
| = [yl = max{|z| - [y[, [y — |z[}
< |z =yl
triangle
Inequality
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Upper bounds:

Name BOUNDED ABOVE LEAST UPPER BOUND
Definition A CR is bounded above if: s € R least upper bound of A C R if:
b€ Rs.t.a <bandVa € A s upper bound A
b any upper bound A, ands < b
Notation | the numberbd is called an upper bound | s = sup(A) called the supremum of the set A
Example A={t:neN}y={1,1,3,...,} A={l:neN}={1,1,3,....}
b > 1 upper bound for A Claim: sup(4) = 1
Clearly, % <1 foralln e N
so 1 is an upper bound for A
ifb is any upper bound for A
thena <b foralla e A
in particular, for a =1 we havel < b
Number Definition 1.3.1 Definition 1.3.2
Lemma 1.3.8:

if s is an upper bound for Athen: s = sup A <> Ve > 0da € Ast.s —e < a
PROOF PART 1:

PROOF PART 1: |

PROOF PART 2:

Lete > 0 arbitrary

s —¢e < s — s =enot upper bound A
Jda€ Asts=¢ec<a

Let b upper bound for A

b < sthen fore = s — bexistsa € Ast.b=s—¢c<a
bnot upper bound, contradiction.

Hence s < bimplies s = sup(A)

Lower bounds

Name LOWER BOUND: GREATEST LOWER BOUND
Definition | [ is called a lower bound of A C R if: | 4 € R is called the greatest lower
JdleRstl<avVae A bound of A C R if:
1 lower bound for A and
[ any lower bound for A
wherel < ¢
Notation 1 = inf(A)
Example {2 :n € N}any number! <0
lower bound for A
Number Definition 1.3.1
Lemma 4:

ifi is a lower bound for A then:i = infA <> Ve > 03da € Ast.a<i+¢
Proor: Exercise 1.3.1

Maximum and minimum:

Definition 1.3.4 Maximum and minimum: real number ag maximum of set A if g element of A and a¢g >
afor allae A

real number ¢; minimum of Aifa; < afor alla € A

Warning: sup(A) not always maximum A .For example sup{%, %, %, ..., } =1 no largest element!
inf(A) not always minimum A. For exampleinf{1, 1, %7 ...} =0, no smallest element.
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Lecture 2
The real line:
Name Set | Ordening(<,=,>)? | Algebraic operations?
Natural numbers N Yes + X
Integers / Yes + — X

Rational nu

mbers | Q Yes + — x:
Real numbers R Yes + — X

What is the difference between Q and R?

Q has many gaps. Numbers like /2, e, 7 are not in@Q
Example:
By example that v/2 & Q
Theorem V2 ZQ
Proof: Assume 2 = 23, withp, ¢ € Zand GCD(p,q) =1

ﬂz%:sz—i:pQZQqQ
Sop? is even, sop is even, sayp = 2k
= p? =2¢° = (2k)? = 2¢*> — ¢* = 2k?
¢? is even so ¢ is even.
GCD(p, q) # 1, at least 2

so proven by contradiction v/2 # % s0v2 ¢ Q

Do least upper bounds exist?

We used the definitions we saw in the first lecture for least upper bound and greatest lower bound.

1393

985

Red: the set

3363
2378 577
408 -

A={z€Q:2<2}

Blue: the upper bounds for A that are inQ
Is this subset bounded above? Therefore we use a new axiom.

Definitions:

AxioM OF COMPLETENESS (A0C): Every nonempty set of R is bounded above has a least upper

bound.
Theorem 1

.4.2: ARCHIMENDEAN PROPERTY:

Consist 2 parts:

Theorem

VreR,In € Nst.n>zx

Vy>0,3neNs.t.%<y

Proof

Not true? N bounded above
AOC= o =supNwherea ¢ N

Lety > 0 arbitrary

Setz = %
Yy

a — 1 not upper bound. By the first statement, exists N € N s.t.n >z

Existsn e Nst.a—1<n=a<n+1
n+1 & N = a Not upper bound N
Contradiction.

1_1 _
Therefore - < =~ =y
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Nested Interval Property closed interval:

Theorem 1.4.1: -
[a1,b1] D [az,b2) D ... = () [an,bn] # 0

n=1

Proor:
We have to show that 3z € Rs.tz € [a,,b,]Vn € N
Define A = {a,, : n € N}

[ [ ] 1 ] 1
T T 1 1

[ 1 T
) Gy ag o Ay e by e by by by

—=

so we see that b, upper bound a,,
AoC gives us: z := sup(A) exists.
an < Vn e N Since x =upper bound for A
x < by, VYn € N Sincex = least upper bound of A
x € [an,b,] VneN

Nested Interval Property open interval:

The NIP does not work for open intervals:
EXAMPLE:

Proof that for I,, = (0, +) we have that () I, =0
n=1

Whenz <0 weiavex & I, foralln € N
Whenz > 0 we have that 3k € Ns.t. % < x(by AP), And therefore,3k € Ns.t.x & I},

So in both cases we havex ¢ (] I, so I,=0
n=1 =1

= n=

Rational and Real numbers:

Theorem 1.4.3:Va,b € Rwitha < b,3dr € Qst.a<r <b

Proor:

(1)a < 0 < bthen one nicer between it, namely the rational number 0
(2)0 < a < b (works also forb < a <0, by working with —a and —b)
d,n,m € Ns.t.

—<b-

n Bom<na+l<nb-L)+1=nb
m—1<na<m
Combine inequalities.

na <m
Sna<m<nb=a<2<D
m < mb n

™ € Qso there exists indeedr € Qs.t.a <7 <b

Existence of square roots:

Ja € Rs.t.a? =2

PRrROOF:
define A = {t € R: t? < 2} and @ = sup A,then:
a? <2 takenENWith%<§;ii a2>2taken€Nwith%<%
So(a+2)2=a?+22 4+ L <qg?420tl <9 (a—1P=a?-224 5 522259
Soa + % € Asoa not upper bound A Also contradiction, therefore, the theorem is true
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Lecture 3

1-1 CORRESPONDENCE: counting without counting by making sets.

Functions:
Definition:

FUNCTION: f : A — B maps eacha € A with single elementb = f(a) € B.

DoMAIN: A&RANGE:ran(f) = f(A) = {f(a) : a € A}&CODOMAIN: B

Types:

INJECTIVE (ONE-TO ONE) if f(a) = f(b) > a=b

SURJECTIVE (ONTO)if B = f(A)i.e.Vb € BJa € As.t.b= f(a)

BUECTIVE: if f injective and surjective (unique corerespondence between elements of A& B)

Allowed and not allowed.

Two elements in domain can correspond to 1 element in the codomain.

All elements in the domain must correspond to some element in the codomain.

An element in the domain can not correspond to more then 1 element in the codomain.

Cardinality:

Two sets same cardinality if there exists a bijective function: f : A — B
Notation: A ~ B

So 1 to one correspondence, so equally many elements in both sets.
If ~ equivalence relation:

A~ A

A~B& B~A

A~BandB~C=A~C

PRrROOF:

(a,b) ~ (1,1) condsider.

g:(a,b) = (—1,1)sog(x) = %%Ci;b

Use (a,b) ~ Rand (—1,1) ~ Rso (a,b) ~ (—1,1)

Example:

1:

N={1,2,3,...} ~E={2,4,6,...}

A bijection is given by: f: N — E so:
f(n) = 2n

Moral: there are ”as many” even numbers as natural numbers.

2:

N~ Z

A bijection (exercise) is given by:
f:N—=Z

fn) = {(n— 1)/2ifnis odd

—n/2ifnis even
Moral: there are ”as many” integers as natural numbers!
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3:
to prove that (—1,1) ~ R consider:
f:(=1,1) = Rand f(x) = 1%

x

f is injective:

fla)=fb) < al-b)=bl-a)?’<a—b+a’*b—ab’* =0+ (a—b)(ab+1)=0
(ab+ 1) can not be zero (because of the domain) > a—b=0—>a=1b

Note:a,b € (—1,1) — ab € (—1,1)

f is surjective:

f@)=rcaz=r(1-2%) < ra?+z—r =0 is solvible for allr € R
Note: discriminant = 1 + 472 > 0

T = 711\57@

These equation has 2 solutions.

For anyr € R has unique solutionz € (—1,1)

Hence f is bijective.

Countable set

COUNTABLE SET A if A ~ S for some S C N. Opposite: uncountable.
Example isZ

Lemma:

When A conuntable <+ ,3f : A — N injective.

PROOF:
PROOF PART 1 | PROOF PART 2

SCN
f:+A— S bijjective | f: A — Ninjective
So f : ANinjective S =ran(f)
f A — Sbhijective.

Lemma:
A countable<+» g : N — A surjective

PROOF:
PROOF PART 1 PROOF PART 2

f:A— S CN bijective take smallesn, to make it unique.
Vn € SJuniquea, € As.t. f(a,) =n Va € Adsmallesn, € Ns.t. g(n,) = a
Defineg: N — A Define f : A — ranf C Nywhere f(a) = n,

an ifn e S _ _
g(n) o {any element in Aifn &S g(na) o aandf(a) = Na

The map g is surjective. The map f is bijective

Corollary:

B contable
f : A — Binjective
A contable

} = A countable.

} = B countable.

g : A — Bsurjective

Theorem: A, countable for alln € N — [ J A, countable.

n=1
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Example:

1:

N x N = {(n,m):n,m € N} is countable since: f : N x N — N, f(n,m) = 2"3™ is injective.
EXERCISE: find a bijective map f: N x N — N

2:

A, B countable - AU B countable.

Assume: f: A — N andg : B — N injective, and let:

h:AUB — N
_ J2f(x)ifzrc A . C e
h(z) = {Zg(x)+1if:ce Bandas ¢ A This map h is injective.

3:
A, ={0,+£1 +2 .} countable.

Why?Q = |J A, is countable.

n=1

Uncountable sets

Theorem The interval (0,1) uncountable R uncountable.
Proof Cantor (1891) Takeg : N — (0,1) Assume R countable
Then: 9(2) = 0.da1daadasday . .. Ifg: N — R surjective then:
Definet € (0,1) byt = 0.c1cac3cy - - R = {x1,x9,3,...,} wherez,, = g(n)
Wherec,, = {zjijm ig So we show that dz € Rs.t. x # z,, wheren € N
Thent # g(2)for alln € N Choose closed and bounded intervals as follows:

Il s.t.xl € Il

So g is not surjective I CListas &1

o0
NIP= 3z e Rstxz € () I,
n=1

But z # z,Yn € Nbecausez,, & I,

Corollarly Q =R\Q
Q countable, Q€ countable
SoQ U Q¢ countable, contradiction.
There are more irrationals then rationals.
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Lecture 4

tangent line, sequence and neighborhood:

NEWTON’S ROOT FINDING METHOD:
Newton's root finding method

v

(x1, fx))

Where equation tangent line:y = f/(x)(z — 21) + f(z) and:
1

Root of tangent line x5 := x1 — f,(g;l)) ‘ Iternative proces Tpi1 := T, — ]{,((‘7;")) forn=1,2,...

SEQUENCE: a function with domain N
Can be written as infinte list of numbers:

RIS 1

(') (T)Zozl = (f’ 553 -)3?1 =2andx,41 = 5(% + 1)

LIMIT OF A SEQUENCE: (a,) converges to a if Ve > 0,thereIN € Ns.t.n > N — |a, —a| < ¢
Notation: @ = lim a,, or a,, — a. Soa,, gets arbitrarily close toa asn grows larger.

NEIGHBORHOOD: (1)thesetV. ={z €R:|z—a|<e}=(a—¢e,a+¢)fora € R—ande >0
NEIGHBORHOOD: (2)Ve > 0,theredN € Ns.t.n > N — a,, € V:(a) when a,, converges toa
So the tail of the sequence get trapped in V(a)

Ve(a)

P ey Ve(a)
( ' ) —_—
a—€ a a—+ € ay az az *-°° %
a—e€ (‘1 a+te€
Example:
T . 6nf7\
lim ;- =0 hm(gn+1)—2
6nt7 _ ol _ [6n4l _ 6n42[ _ 5 _ 5
3n+1 T | 3n+1 3n+1| ~ 3n+1 3n
Let € > Oarbitrary Let e > Oarbitrary
1 1 3
by AP,IN € Ns.t. i <¢ by AP,IN € Ns.t. & < ¢
1 1 6n+47 5
nZN%;§N<€ TLZN—) 3n+1—2‘<%
1 1 5
—[a-0l=a<e Sav <€
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Limit and (di)convergence

STANDARD LIMITS:

Standard limit condition standard limit | condition
lim -5 =0 a>0 lime"=0 |[-1<ec<l1
limc"n®*=0 | -1<ec<l,aeR lim /c=1 c>0
lim {/n =1 lim 2 =0

DIVERGENT SEQUENCE: a sequence that does not converge.
For example: (a,,) = (=1,1,—1,1,...) is divergent.

DEFINITION OF CONVERGENCE: Ve > 0,3N € Ns.t.n > N — |a, —a| <¢
DEFINITION OF DIVERGENCE: 3¢ > 0s.t.VYN € N.3n > Ns.t.|a, —a| > €
PROOF:

Choosee = 1land N € N arbitrary.

Case:a >0n=2N+1—=|a, —a|=|-1—a|—-1+a>¢

Case:a <O0n=2N = |a, —a|=|1—a|=1—-a>¢

Bounded Sequences:

BOUNDED SEQUENCE (ay,):if 3M > 0s.t |ay| < MV¥n € N

Theorem: (a, ) convergent — (a,) bounded.

Note: can be used to prove sequence diverges.

Proor:

Let a = lim a,, then fore = lexistsn € Ns.t.: by triangle inequality:
n>N = |a,| —a < 1sol|la,| — |a|| < 1solan| —|a] < 1sola,| <1+ |a]
For M = max{l|a1l,|anl,---,|an—1],1 + |a|} we have|a,| < M for alln € N
So (ay,) is convergent leads to (a,,) is bounded.

Examples:

1: (an) = (1,4,4,...) is bounded (take M = 1)

2: (b,) = (1,4,9,16,25,...) is not bounded.

3: (a,) = n? diverges because it is not bounded.

For M = max{|a1],|an|,-..,lan-1],1+ |a|} we have:|a,| < M for alln € N
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Algebraic porperties:

ifa = lima, and b = limb,, then:

Algebraic propertie Proof
lim(ca,,) = ca (wherec € R)
lim(a, + bn)a+b [(an + bn) — (a+b)| = |(an — a) + (by, = b)| < |an —a|] + |bn, — b

Lete > Qarbitrary:
JN; € Ns.t.n > N; = |a, —a| < i¢
IN; € Ns.t.n > Ny — |b, — b| < %25
N = max{Nj, Ny} then:
n>N = |(an+b) = (a+b)|<iet+ie=c¢
lim(anb,) = ab lanb, — ab| = |anb, — ab, + ab, — ab|
= [bn(an — a) + a(b, — b)| < |bn(a, — a)| + |a(b)n — b|
= |bnllan — af + |a||bn — | < Mlan — a| + |al[bn, — b]
(b,) convergent and by that bounded.
€ > Ogives:
N1 € Ns.t.n > Ny — |a, —a| < 55
dN; € Ns.t.n > Ny — |bn —b| < ﬁ
Define N = max{N;, N5} then:
n>N = |ayb, —ab] < e

lim(g2) = 7ifb#0

Order properties:

lima, = a&limb, = b then
Order property Proof
(1)ap,>0VneN—a>0 assumea < 0, fore = |a| exists N € Ns.t.
n>N-—ola, —a|<e—sa—cec<a,<a+e
a, < a+ ¢ = 0contradiction.

(2)a, <b,¥yneN—-a<b an < b, thenb,, —a, >0
b—a=1lim(b, —a,) >0—>0>0

B)e<b,VneN—-c<bH a, = c from 2

dan<cneN—-a<c b, = ¢ from 2

Strict inequalities are not aways preserved.
Vn € N% > Obutlim% =0

VnGNnil < 1butlirnni+1 =1
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Lecture 5

monotone sequence:

increasing: an < an4+1Yn € N

MONOTONE SEQUENCE a,, if it is
Q n Decreasing: an > an4+1Vn € N

(an) bounded& monotone — (a,,) converges.

PROOF: A = {a,, : n € N} bounded.

(1) (ay) increasing — lima,, = sup A

Proof (CTD) assume (a,,) increases and let s = sup{a,, : n € N}
Lete > Oaribtrary — s — e not upper bound.

Exists N € Ns.t.s = ¢ < a,. For N > N we have:

s—e<any <ap <s<s.— |a, — 8| < e soa, converges.

(2) (ay,) decreasing — lim a,, = inf A (exercise!)

Examples:

1: (a,) = (1, %, %, i, ...yand (b,) = (1,1,2,2,4,4,...) are monotone.
2:(¢c,) =(1,0,1,0,...) is not monotone.

3: ifay+1 =1+ a, witha; =1 then (a,) converges.

(a) proof by induction that a, is increasing.

Base case:

ar=1,as = V2soa; < ag

Induction step:

Assumea,, < any1 for somen we have:l14+a, <14+ any1 = V14 an < VI+ant1 = anp1 < anga
Soa, < apt1 < Apya < ... S0 increasing.

(b) proof by induction that (a,) is bounded.

ar=1—a1 <2
an<2f0rsomen—>1—|—an<3—>\/1+an<\/§<\/§—>an+1 <2
So a bounded sequence.

(¢) Findlima,

By MCT, existsa = lima, a2, =1+ a,solima2,; =lim(l1+a,) = a®> =1+a=a= 1%

S
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Subsequences:

Pickng € Nst:1 <ni <ng <nsg<...

If (a,) is a sequence then: (ay, ) = (@ny, Gnyy Gng, - - .) 18 called A SUBSEQUENCE OF (ay,)

Note:ny > k for allk € N

Theorem:lima, =a — lima,, =a

PROOF:

Lete > 0 arbitrary soIN € Nstn > N — |a, —a| < ¢
Useny > k so you can say thatk > N = niy > N
Solan, —al <e

Examples:

1:
(an) = (17 %7 %7 i7 %7 . )
Example of subsequences

nk:2k—>(ank)—(§71 61 )
n, = 10% —>(ank) (ﬁ 700 ,1000,...) 2:
(an) =(-1,1,— ..) diverges:

Take 2 subsequences.

n, = 2k — (ap,) = (1,1,1,1,...) = lima,, =1 n, =2k —1 — (an,) = (—1,-1,
lima,, = -1

Different subsequences have different limits — (a,) diverges.

Bolzano-Weierstrass theorem:

Every bounded sequence convergent subsequence
PRrROOF:

YnidM > 0s.t.a, € [-M, M]

Every bounded sequence has a convergent subsequence.

!

. . .
=M T — M
—_—

oo
Halving proces: nested intervals: Iy C Io C I3 C --- = NIP — there existsz € () I,

=1
Each I}, contains infinitely many terms of sequence. !
Pickn; € N with a,, € I;
Pickngo € N withng > njanda,, € I
Pickns € N withns > npanda,, € I3

. € 1
Note that k} — |an, — x| <length(lx) = 2L — 0
Qn,, e Iy

So convergent subsequence.

7]_’

-1,...) —
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add infinitely many numbers.

oo
infinite series: Y ayp = a1 +as +az+ ...
k=1
n—th partial sum:s, = a1 +as+ ...+ a,
ifs,, = s then we say that the series converges to s
E(;yLER’S FAMOUS EXAMPLE:
> 7= converges:
k=1
PROOF:
Sp = 1+%+%+...+#sosn < $py1for alln € Nsos,, < 2for alln € N
MCT: Limits s, exists.
Why iss, < 2for alln € N?
_1+22+33+44+
1
=1+(1-3)+(—3)+
Sn <2— % sosp, <2

Remark: since s,, < 2 ,for alln the order limit theorem implies:
o0

1 1 1 1 1
o 1+ﬁ+ﬁ+m+---+m

+7l
L+ (G-

> 4z =lims, <2
k=1
Euler found also: Z and Z 1= 9—3

For even power of k we know the solutlon of the infinite summ, for odd powers of £ the solution is

unknown.

The harmonic series and intergral test for converges:

o0
Harmonic series: ) 1 diverges.

k=1
PROOF:
sn=1+t+3+3+...++
B L T
spp > 143+ (G+D+ + G+ I ()
=1+i+2(3+43)+... +28 (%)
1

s>1+%forallk e N

So s, is unbounded (because the subsequence is divergent) and therefore s,, is divergent.

The integral test:
Assume that f : [1, oo) — Ris positive, continuous and monotonically decreasing.

Letar = f(k) then Z aj converges <> f f(z)dz < 0
k=1
PROOF: where s,, = al —|— as + ...+ ay, because ai > 0increasing.

' So [ fx)dz < s, <ai+ [ f(x)dz for alln € N
1 1

[ f(x)dz < coso s, bounded& convergent, [ f(z)dx = ooso s, unbounded& divergent.
1 1
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Lecture 6

Cauchy sequence:

Name Theorem Proof or meaning.
CAUCHY Ve > 034N € N The terms get close to eachother
SEQUENCE | s.t.n,m > N — |a, —am| <¢
(ay ) convergent — (a,,) cauchy assume a = lim a,,
For alle > 0 there exists NV € N such that
n>N = la, —a| < e
m,n >N = |a, — am| = |(an — a) — (am — a)
<lan —a| + |am —a| <€
Lemma (an) cauchy — (a,,) bounded Fore = 1there exists N € Ns.t.

n,m>N = |a, —ap| <1
fixm = N:
n>N—=la, —an| <1
> Jan — Jan]| < 1
— lan| — lan] < 1
= lan] <1+ |an|
For M = max{|ai|, |as]|,...,|an-1,1+ |an]||}
we have |a,| < M for alln € N

(an) Cauchy — (ay) convergent

Lemma gives (a,, ) bounded.
BW gives (a,,) convergent subsequence (a,, )
soa = lim(ap,,,)
for alle > 0 there exists V € Ns.t.
n,m >N = |a, — an| < %6
Fix an index: nj, > N's.t. |an, — a| < 3¢, then:
n>N = |a, —a| = |an — an, + an, — a
|an — a| < an — an, | + |an, —a
lan, —a|l <e

Properties of series and algebraic limit theorem:

o0

INFINITE SERIES: Y a, = a1 +az +ag+ ...
k=1

N-TH PARTIAL SUM: S, = a1 +as + ...+ an

oo
CONVERGENCE: Y a; = A < by definition — lims,, = 4

k=1
ALGEBRAIC LIMIT THEOREM:
if > ap = Aand > b = B then:
k=1 k=1
(1) > cap, =cA forallc e R
k=1

o0

(2)> (ap +br)A+ B
k=1
Proof:

Apply analogous theorem for sequences to partial sums.
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Cauchy criterion:

Theorem: The following statements are equivalent:
o]
(1) > ap converges.
k=1
(2) for alle > 0 there exists N € Nst.n>m > N = |ami1 + Gmia + ...+ an| <€
PRrROOF:
Note that: |s,, — Sm| = [am+1 + .. + an]
Statement 1< (s,,) converges < (s,) Cauchy < statement 2.
So equivalent.

Example:

o0
> + diverges.
k=1
For anym € N andn = 2m we have:

1 1 1 1
amt1 +amy2 Tl = gt et gy > g = g
SOt [am41 + Gmy2 + ...+ an| > 3

Hence, the Cauchy criterion fails. So, this serie is diverges.

Necessary condition for convergence:

o0

Theorem: »_ aj converges = limay = 0
k=1

PROOF:

Lete > 0 be arbitrary.
There exists N € Ns.t.n >m > N = |apmi1 +amio+ ...+ an| <e
n=m+landm > N = |apmy1| <€

o0
Warning: opposite is not true. Counterexample: lim% =0but ) %diverges.
k=1

Note:
The previous theorem also gives a test for divergence.
o0
. E41 _ 3.,.4_5
Example: kg_:l(fl)k“% =l-35+5—5+ -

Diverges since lim a, = lim(—1)**1 - £t does not exist.

Comparison test

Theoremif(0 < a; < by for allk € N, then:

(o] o0
(1) > b converges — > aj converges.
k=1 k=1

(2) 3" ay diverges— > by diverges
k=2 k=2

PRrROOF:

|@m+1 + G2+ .o+ an| = @mt1 + aGmaz + ...+ an

< bm+1 + b7n+2 +...+ bn = |bm+1 + bm+2 +...+ bn|
Apply the cauchy criterion for series.

Note:

Theorem does not have to hold for all & but just for large k
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Example:

o0

> 4% converges

k=1

Fork > 4 we have: k! > k2 — % < k%

o0 o0
Apply comparison test: k—lfz converges — » % converges.
k=1

k=1

Alternating series test:

Theorem: assume:
(-)0 < agt1 < ap forallk eN
(-)limar =0
o0
Then the alternating series > (—1)*+1a;, converges.

k=1
PROOF:

Consider the partial sums:

Sp=a; —as+az—...+(=1)""a,
Proof (Ctd): the partial sums form nested intervals:
I, = [son,Son—1) =11 21, D132 ...
NIP = ds € Rs.t.s € I, foralln € N
lete > 0 be arbitrary.

Choose N € Ns.t.asny < € then:
n>2N=s,s, €1, = [52]\7,527171]
= |s — sp| < san—1 — San

= |5 - 5n| < 2N

=|s—sp <e

Example:

O k41
k¥1 % =1- % + % ... converges.
This follows from the alternating series test:

ap = %satisﬁeso <ag+1 < ap andlimag =0

Absolute vs. conditional convergence:

oo} o0

Theorem: ) |aj|converges — > aj converges.
k=1 k=1

Proor:

0 <ag+ |ar] < 2|ak\ for allk € N
o)

Comparison test — > (ar + |ag|) converges.
=1

Apply Algebraic limit theorem:

o) o0

[ee]
> ar = Y (ar +lax|) — > |ax| converges.
k=1 k=1 k=1
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Absolute and conditional convergent:

> ay, is called:
k=1

o0
(1) ABSOLUTELY CONVERGENT if Z lax| converges. Example: >

k=1

e}
T . ; . . (=1
(2) CONDITIONALLY CONVERGENT if it converges, but §_ lax| diverges. Example: %

Geometric and telescoping series:

(-
2

k=1
k+1

k=1

(oo}
GEOMETRIC SERIES: is of the form: Y ar* = a+ar +ar? + ...

k=0

PARTIAL SUMS: s, = a-+tar+ar’+...+ar" ! = rs, = ar+ar’+ard+.. +ar™ = (1-71)s, = a(1—r")

For|r| < 1 we have: sn—hm(1 7"):

o
TELESCOPING SERIES: of the form > a

k=1
Successive terms cancel eachother out:

Sp, =a1 +a2+az+...+ay
sp = (b1 — b2) + (b2 — b3) + (b3 — bs) +
The series converges < (by,) converges.

Example:

1:
We have 0.999.
This follows from

0.999. leokfﬁzg(io) =+ =2
2:
Solution:
o 1
Sn = k;z::l(E - k+1)
== +G-3)+ - +G—a)
=1-Z5—1

1—

118

St (bn - anrl) =b — bn+1

3:

1
Z k2¥7k+12 ~ 4
k=1

Solution
n
1 1
+7k+12 E (k+3)(k+4) kz_: (T m)
“H G-t G )
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Lecture 7

open and closed intervals, open sets:

CLOSED INTERVAL: (endpoints included): [a,b] = {r € R: a < z < b}
OPEN INTERVAL: (endpoints not included): (a,b) = {x € R: a < x < b}
How to define open and closed for arbitrary sets?

OPEN SETS: O C Ropen ifVa € O therede > Os.t. V. C O

Recall:V.(a) ={z e R: |z —a| <e} = (a —c,a+¢)

Note: the empty set () is open by definition.

Example:

1:

the interval (¢, d) is open. takex € (¢,d) arbitrary.
Takee = min{|z — ¢|, |z — d|} ,then V. C (¢, d)

2:

The interval [¢,d) is not open, forz = cnoe > 0 works.
Because for any e ,c — € is not in the interval.

3:

Q@ is not open.

Takee > 0 arbitrary.

Taken € Ns.t.% < 5 and setz = %

2
Thenz € V-(0) butz # Q

Unions and intersections:

Theorem:
(1) Union of arbitrary collections of open sets are open.
(2) Intersections of finite collections of open sets are open.
Proor:
(1) Let O = |J O; with each O; open.
i€l
xGO—MCGEOi for some i € [
There existse > 0s.t. V.(X) CO; CO

(2)1etO =01N02N...NO, with eachO; open.

€0 —x2e€0Q; foralli=1,...,n
For alli = 1,...,n there exists, ¢; > 0 such that V,,(z) C O;
Fore = min{ey,...,e,} we have:V.(z) CO; foralli=1,...,n

WARNING: intersection infinitely many open sets need not to be open: Counterexample: O,, is open

for alln € N: because (| O, = {0} is not open.
n=1

Warning:

The intersection of infinitely many open sets NEED NOT BE open!
Counterexample: ),, = (—1 1) is open for alln € N

n’n

N O, = {0} is not open!
n=1
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Limit points:

LIMIT POINT: z is a limit point of A C R if:

Ve > 0of V. (x) intersects A in some point other than x
Note: limit points of A may or may not belong to A.
Theorem: The following statements are equivalent.

(1)x is a limit point of A

(2) There exists a sequencea,, # z,¥n € Nandz = lima,
PRrROOF:

1—2

Letn € N and sete = &

There existsa, € V.(x) N A witha, # x

Note that: |a, —z| <e=1
2—=1

for alle > 0 there exists N € Ns.t.:

n>N—=|a, —z| <e

By assumption Ay # xand 4,, € A we can conclude that 4,, € V.(x)

Example:
1: 2:

2 =0 is a limit point of A={1:n €N} z=0andz =1 are limits of 4 = (0,1)
Takee > 0 arbitrary. Forx =0 takea, = ﬁ
TakenENs.t.%<5 Fomc:1taukean:nL+'1
Then+ € V.()) N A

Note:0 ¢ A

Prove same result by means of definition.

Closed sets:

CLOSED TEST: contains it limits. Can’t leave set by taking limits.
Theorem: Equivalent:

(1) F is closed

(2) Every Cauchy sequence in F' has its limit in F’

Proor:

1 — 2Let (an,) C F be Cauchy.

r = lima,, exists; now consider 2 cases:

(a):  # ay, then for alln € N — x is a limit point of ¥ — z € F
(b): = a, for somen € N — x € F holds trivially.

2 — 1 Letz be a limit point of F’

¢ = lima,, witha, € F anda, # x for alln € N

(an) convergent — (a,) Cauchy — a € F' by assumption.

Example:

[e,d] is closed.

Let x be a limit point of [¢,d] z = lim x,, for some sequence (z,) C [c, d]
c<z, <d foralln € N

Order limit theorem: ¢ <z < d — z € [¢, d]
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Closure:

CLOSURE OF A: A = AU {all limit points of A}
Theorem: A is closed.

PROOF:

(1) z limit point of A and A C A then z limit point A
(2) A= AU LL with L = {Limit points of A}

x limit point of A — Ve > Othere 3y € V.(z) N A wherey # x
Soye Avye L

(a)y € A — xis a limit point of A

(b)yeL

— V4§ > 0theredz € Vs(y) N A wherez # y

Note: Vs(y) C Vz(z) around{z} ford small enough
— x is a limit point of A

Theorem completeness:

(1) O open < O° closed.

(2) F closed < F*°open.

MUTUALLY EXCLUSIVE:

Sets are not open OR closed. They can be neither open nor closed (0, 1] and @, but they also can be
open and closed, R and ()

So impossible to prove openess or closeness by contradiction.

UNIONS AND INTERSECTIONS:
(1) uninons of finite collections of closed sets are closed.
(2) intersections of arbitrary collections of closed sets are closed.

PROOF:
(1) (2)
Fy, ..., F,closed Ffopen for alli € 1
Ff,...,Ffopen— FfN...N FEfopen U (Fy)¢open— (|J F¥)© closed
i€l i€l
— (Ffn...NnEf)°closed — Fy U...U F, closed. — [ F; closed.
iel

Warning: union infinitely many closed sets need not to be closed.

oo
Counterexample: F), = [~ 75, 7] closed for alln € N but L_Jl F, = (—1,1) not closed.
example
1: 2:
if A= (0,1)then A = [0, 1] Q=R
All points of A are limit points. Takez € Rande > 0 arbitrary.
Also,z = 0andx = 1 are limit points. Q is dense inR: there existsr € Q
Ifzx <0 orxz > 1 thenz is not a limit point of A such thatz <r <z +¢

Hence € Vo(x) NQandr # x
So, eachx € R is a limit point of Q
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Lecture 8

Sequential definition:

COMPACT SET a set K C Ris compact if every sequence in K has a convergent subsequence with a

limit in K
Theorem:
K C Rcompact <+ K closed and bounded.

PROOF:
%

<

Assume k£ not bounded
exists x, C K with |z,| > nfor alln € N

T, no convergent subsequence.
Contradiction: K bounded.

z limit point of K ,provex € K
dx, € Ks.t.x =limz,
K compact 3(x,, ) converge toy wherey € K
(Tn,) > zas wellr =y € K

GENERALIZATION OF NIP:

(xn) CK
K bounded, so (x,,) bounded.
B-w theorem: (x,,) convergent subsequence.
r =limz,,
K closed =z € K

Theorem: Assume K, # (Jis compact for alln € Nand K3 O Ky 2 ...then (| K, nonempty.

Example:

1:

n=1

2:

Every finite set is compact
Let K = {al,ag,. . .,ap}

Let (z,) C K be arbitrary.
Without loss of generality z,, = a1
for infinitely manyn € N
Take (2, ) s.t. xn, = ay for allk € N
limz,, =a € K
3:

[a, b] compact
Let (x,) C [a, b] arbitrary
() bounded.
BW-theorem: (z,,) convergent subsequence (zy,,)
Letz =lima,,
Order limit theorem: a < z,, < bfor allk
a<z<b
4:

(0, 1] not compact
Takez, = 1 € (0,1]
Every subsequence (x,, has
lim 2, = 0but0 ¢ (0, 1]

R not compact
T, = nno convergent subsequence.

5 6
Every finite set compact K = {1 :n e N}U{0}not compact
K ={a1,a9,...,a,} K bounded: |z| < 1for eachz € K
K bounded:z € K — K closed ifx < Oorz > 0 then
|z] < M =max{|ai|,...|ap|} x not limit point of K (exercise!)

Kclosed:a; <as <...<a
K¢ = (—00,a1)U (a1,a2) U...U (ap,o0) open

2z = 0limit point of K and,z € K
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Open covers:

A C Rand assume O; C Rwherei € I are open.

OPEN COVER: O;ifA C | O;
i€l

Theorem: K compact <+ K has a finite subcover.

PROOF:
= =
O,, = (—n,n),n € Nopen cover K 0;,1 € I open cover K without finite subcover
KCO1U...UOy = (=N, N)for some N € N. Take bounded closed interval J; C K
Therefore, K is bounded. Halving proces: construct J,, s.t.:

J1ChCJ3C...
K N J, not be convered by finitely many O;’s
K N J, compact for alln € N
Length J,, = 2;{—&1 —0

o0

Lety be a limit point of K NENT,) #0
n=1
There exists (y,) C K withy = limy,. Jx € Ks.t.x € J, for alln
Assumey ¢ K Letz € Kand O, = V. (x) x € O;fori € Tande > 0s.t. Vo(z) C O;
e=1z—y| dN € Ns.t.length (Jy) < e
Set O, open cover K Hence K N Jy C V.(z) C O; contradiction.

Jri,..., 22 € Kst. K C O, U...UO,,
Pick N € Ns.t. [yy — y| < min{3|z; —y[:i=1,...,n}
Hencey, & Oy, U...U Oy, contradiction

Heine Borel theorem: Let K C R then following statements equivalent:
(1) K is compact

(2) K is closed and bounded.

(3) Any open cover K has a finite subcover.

Example:

1:

Possible open covers for A = (0, 1):
O =R

Ol - (07 1)

01 = (0, %)and 02 = (%,5)

Oz = (—15, %) ,n € N. Has a finite subcover! O, = (£,2),a > 1 does not have a finite subcover!

Every finite set is compact:

Let K = {a1,a2,...,ap}

Let O; wherei € I be an open cover for K
There existsiq,...ip € Is.t.a; € Oy,
Therefore K C O;, U...UO;,
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Lecture 9
LIMIT POINT: ¢ is a limit point of A where f : A — Rwhen:
0 - 1)
lim f(z) = Lwhen: Ve > 035 > Os.t.{ <le—d< } = |f(x) - L| <e

r€EA
Note: f need not be defined at ¢
Note: type definition: €, § definition.

SEQUENTIAL CHARACTERIZATION:

Let f: A— Randc a limit point of A the following statements are equivalent:

(1) lim f(x) = L
(2)lim f(x,,) = L for all(z,) C A witha, # ¢ and limz, =c
(3) lim f(x) does not exist if there exist (zy,), (yn) C As.t.
T—C
(a) zy, # candy, # ¢
(b)limz,, =limy, =c¢
(¢) lim f () 7 lim f(yn)

Example:

1: )

: tz—6 _

lim 2 =1

Lete > Obe arbitrary and set § = be

If0 < |z — 2| < § ,then:

22 fx— _ | (z+3)(z—2 =z _ Jz—2 _
5;—106*1‘* %*1’*|%3*1 = | 5 ‘<%*6
lim \/x = y/cfore > 0
Tr—c

_|_z—c | _ _lz—¢|
Ve = Vel = | 757 = verve

Withe > 0andd = v/c- ¢ the definition is satisfied.
:S:,If — e < 224

lim f(z) does not exist for:
z—0

flx) = {éii Zg and takex, = %and Yn = ? then it satify:

limz, =limy, =0
lim f(x,) = landlim f(y,) = 0so the limit does not exist.
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Algebraic porperties:
Let f,g : A — R,ca limit point of Aand lim f(z) = L and lim g(z) = M Then:
Tr—c Tr—C

Algebraic property  condition Algebraic property
(1) lim kf(z) = kL keR lim f(z)+g(ae) =L+ M
xr—c r—c
lm 85— & M#0 [ lim f(2)g(z) = LM

e —c| <

ConNTINOUS function f : A — RifVe > 0there 3§ > 0s.t. { sed

b1t - ftoll <
Notes:

(1) f(c) needs to be defined

(2) ¢ need not to be a limit point of A

(3) 6 may depend on e&c

(4) type of definition=¢,0 definition.

Example:

1:

Ifc € A is isolated then f : A — R is continuous at ¢

Lete > 0Taked > 0s.t. Vs(c) N A = {c}, then:

|t —c|<dandz € A= 2 € Vs(c)NA

=z =c= f(x)=f(c)=[f(z) - flo| =0<e

2:

f(x) = 22 is continuous at everyc € R

For |x — ¢| <1 we have |z| < |c¢| + 1and

[f(@) = f(o)] = [2° = | = |z +cllz — ] < (2] + |e])]z — | < (2le] + )]z — ]
For a givene > 0take d = min{1
3:

f(z) = |z| is continuous at everyc € R

For alx,c € R we have:

|f(z) = f(e)] = |lz| = le]| < |z — ¢

For a givene > 0 taked =¢

0 independent of ¢ here because constant slope (-1 or 1).

S

sequential characterization:

f:A—Randc € A Then following statements equivalent.

(1) f continuous Q¢

(2) (zn) € Aandlimz,, = ¢ = lim f(z,) = f(c)

(3) ¢ limit point of A then 1& 2 also equivalent with lim f(x) = f(c)

r—c

f:A— Randc € A limit point. fnot continuous @z = cif there exists (z,) C As.t.

Tn #£c limz, =c lm f(z,) # f(c)
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Example:

there exists no numbera € R that makes:
_Jsin % ifr #0
f(I) " Naifz=0
(-) ifa # 0, then withz,, = n%r we have: limz, =0 butlim f(x,) =0 # a = f(0)
(-) ifa =0 then witha, = ﬁ we havelim z,, = Obutlim f(z,) =1 # a = f(0)
2

continuous atx = 0

Dirichlet’s function:

Dirichlet’s function Modified dirichlet’s function.

lifz € Q zifx € Q

g(x):{omg_z@ h(x):{OifoQ

Nowhere continuous Only continuous at z = 0
ProOOF PrROOF
Takez, = c+ ? sox, € Q Continuity follows from |h(z)| < |z| by:

Then lim z,, = cbut lim g(x,,) = 0 # g(c) 1limz, =0 = limh(z,) =0

Proof of discontinuity atc € R\ Q or €, § definition

Takex,, € Qs.t. |z, — ¢| < % vneN Proof of discountinuity at ¢ # a as for dirichlet’s function.
Thenlimz, = ¢
Butlim g(z,) =1 # g(c)

Thomae’s function:

lifx =0

t(x) = {711 ife =m/n € Q\ {0}in lowest terms withn > 0
Oifzx ¢ Q

Discontinuous at each ¢ € Q but continuous at eachc € R\ Q

PRrROOF:

Discontinuity atc € Q

Takex, = c+ g Thenlimz,, = ¢ butlim#(x,) = 0 # ¢(c)

Proof of continuity atc € R\ Q

Lete > Oand pickk € Nwith% <e

(¢c—1,¢+ 1) contains finitely many r € Q with denominator < k

Pick0 < § <1 such that (¢ — d,c + J) contains no rationals with denominator < k then:

|z —c| <6 =|t(x) —t(c)] = |t(z)| =t(z) < + <e

term 1b 2020-2021 Page 26



Analysis, University of Groningen H.M. Goossens

Lecture 10

Theorem: f : A — Rcontinuous and K C A compact = f(K) compact.

PRrROOF:

Let (y,) C f(K) arbitraru.

A(x,) C Kst.y, = f(zy,) for alln

K compact = some subsequence z,,, -z € K

f continuous = y,,, = f(zn,) = f(z) € F(K)

WARNING: false for pre-images: f~1(K) ={z € A: f(z) € K}

Counter example: f(x) = Oforallz € R, so K any compact set containing 0, so f~1(K) = Ris not
compact.

Theorem maxima and minima:

Let K C R be compact and f : K — R continuous then f attains a maximum and a minimum
on K

Proor:
Maximum ‘ Minimum
Exercise3.3.1 = s = sup f(K) exists and s € f(K) Exercise3.3.1 = ¢ = inf f(K) exists andi € f(K)
s = f(c) for somec € K i = f(c) for somec e K

s is an upper bound for f(K) = f(z) < s forallz € K | iis a lower bound for f(K) = f(z) > ifor allz € K
Warning: without compactness previous theorem is false.
Counterexample: f(x) = zno minimum on (0,1] no maximum on[0,1) neither a maximum nor a
minimum on R
UNIFORM CONTINUOUS f : A — Ron AifVe > 0,30 > 0s.t. Va,y € A:
-yl < 6= |f(z) — fly)l <e
Uniform means that § does not depend onz ory (butd may still depend one)
NOT UNIFORM CONTINUOUS: Jgg > 08.t. V6 > 0,32,y € Afor which ,|z — y| < §,but |f(z) — f(y)| >
€0
Theorem: f : K — R continuous and K is compact, then f uniformly continous on K
PROOF:
Lete > 0 be arbitrary.
For allc € K there existsd, > 0 such that |z — ¢| < 26 = |f(z) — f(c)| < 3¢
O. = (¢c—b.,c+0.) withc € K, form an open cover for K
K CO U...U0Q,, forsomec,...,c, € K
Takex,y € K with |z —y| < 0 = min{d,,..., 0., }
|z —¢;| <6, forsomei=1,....n
£(@)— Fe] < 3
lei =yl <lei — x|+ |z —y| <, +0 <26,
F(e) — [yl < de
Apply triangle inequality with |f(z) — f(¢;)| < 3eand |f(c;) — f(y)| < ie
= |fx) - fly)l <e
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Examples:

1:

f(x) = ax + b is uniformly continuous on R

Forz,y € R we have:

[f (@) = f(y)l = [(z + b) — (ay + b)| = |al|z —y|

Lete > 0 and pickd = ﬁ then for allz,y € R we have:
[z -yl <d=|f(z) - fy)l <lald =<

Whena = 0 we can choose any d

2:

f(x) = 22 is uniformly continuous on [a, b]

Forz,y € [a,b] we have:

[f (@) = f(W)] = |z + ylle —y| < (2] + [y])|z — y| < 2M|z — y| where M := max{]al, [b]}
Fore > 0 taked = 55; then for allz,y € [a,b] we have:
[z —y| <= |f(z) - fly)| <2Mé=¢

3:

f(x) = 22 is not uniformly continuous on R
xn:n—i—%andyn =n

|Zn — yn| =L =0

|f(@n) = f(yn)| =2+ 25 > 2andVn € N

4:

f(z) =1 is uniform continuous on [a, 00) for alla > 0

Forz,y € [a,00) we have:

1_ 1| |y==| _ [z=y| ~ |z—y

x Yy Ty Ty — a2

Fore > 0 taked = a?c then for allz,y € [a,00) we have|r —y| <5 = |f(z) — f(y)| < > =¢
5:

f(z) =1 is not unif. cont. on (0, c0)
Ty = %_H andy, = %

|1'n - yn‘ -0

[f(@n) = fyn) =1,¥n €N
6:

V& is uniformly continuous on [1, c0)
Forz,y > 1 we have:
—|z—y | _lz—yl lz—y]

Ve - Vil = ’\/5+\/§ = Vet S 2
For givene > Otaked = 2¢ to satisfy the definition.

7:

[0,1] is compact and f(z) = /x continuous on|0,1] gives the conclusion that f is continuous
on [0,1]
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Intermediate value theorem:

f:[a,b] = Rcontinuousand f(a) < L < f(b)or f(a) > L > f(b) then f(c) = L for somec € (a,b)
Note: Without loss of generality we can assume

(-) L = 0 otherwise replace f(z) by f(z) — L

(-) f(a) < 0 < f(b), otherwise replace f(x) by —f(z)

PROOF:

3L, = [an, by]s.t. f(an) <0< f(by)solyp 211 D I, D ... soLength(l,) = %%
So3c € [a,b]soTc € I, = [an, by] ,¥n € N

Note that: |a, — ¢| < Length(Z,) = 0 | [b, — ¢| < Length(I,) — 0

Soc¢ = lima,, = limb,,. Continuity of f implies:

We know f(a,) < 0,andVn € Nso f(¢) <0

We know f(b,) > 0,andVn € Nso f(c) >0

Combine f(c) < 0and f(¢) > 0 we receive f(c) =0

Example:

1:

p(r) = 2° — 22% — 2 has a zero on (0, 2)
p is continuous on [0, 2]

p(0) = -2 < 0andp(2) =14 >0
IVT= p(c) = Ofor somec € (0,2)

2:

if f : [a,b] = R is continuous and f([a, b]) C [a,b], then f(c) = ¢ for somec € [a, ]
Assume f(a) # aand f(b) # b (Otherwise nothing to prove)

f([a,b]) C [a,b] = f(a) >a, f(b) <b

g(x) = f(z) — = is continuous and g(b) < 0 < g(a)

IVT = g(c) =0 for somec € (a,b)
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Lecture 11

Derivative

DERIVATIVE: limit of a difference quotient, denoted by f’(x)

DIFFERENTIABLE f : [ — R (where I C R, interval) @Qc € Tif f'(c) := hm f=2)=f) ) f(c) exists.

Theorem: f : I — R differentiable atc € I = f continuous at ¢

L ROOR: f(z)=£(c) f(z)=£(c)
. _ — Iim L@ =F@) N = i L@ =F©) g5 el — £ . ) =
lim[f(2) = f(e)] = lim Z5== - (2 — ¢) = lim —=7= - lim [z — ¢] = f'(¢) - 0= 0
Example:
1:

lifz >0 . . . . .
flz) = {Oif:p <o Ismot differentiable at c = 0. Reason: f is not continuous atc =0
2: -

f(z) = |z| continuous but not differentiable atc =0

lim M = lim |x| does not exist.
z—0 z—0
3:
life >0
f is differentiable at everyc # 0 and f/(c) = { Life <0 where f(x) = |z|
4:

fa) = 12 = F1(0) =1
We can not use the quotient rule, because derivative of |z| where z = 0, does not exist.

(ac) f(O) = |1zl =
_1’_’1+\x| 1’_’1+\z| 1‘ < ||
7(0) = hm f(z) f(O) =1, bye, é-argument.

Remark: forc 7é 0 we can compute f'(c) using calculus rules.

1+|$\
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Theorems:
Name Theorem Proof
Interior Assume: Maximum: May be false for
f(a,b) — Rdifferentiable
Extremum f attains a maximum f(e) > f(z)for allz € (a,b) closed intervals:
or minimum at ¢ € (a,b)
theorem Then f'(¢) =0 (xn)&(yn) € (a,b)s.t. f(z) =zon|0,1]
Ty < ¢ <yYp,vn € Nand min@x =0
limz, =limy, =c ,but f/(0) =1
fle)= M>O maxQz =1
f(e) = Laml=ie) < g but f/(1) =

y—c
f'(c) =0 by order limit theorem

Darboux’s | If f : [a, b] — R differentiable
Theorem f'(a) < L < f'(b)
or f'(a) > L > f'(b)

there existsc € (a,b)

f'(a) <0< f'(b)

(or replace f(x)by £(f(x) — Lx))
ds € (a,b)s.t f(s) < f(a)
Otherwise f(x) > f(a)Vz € (a,b)
s f'(a) = lim HE=1e > ¢
contradiction
can do the same for f(t) < f(b)
[a, b] compact, f continuous
f mimimum on [a, b]

f(s) < fla)&ef(t) < f(b) =
f minimum in (a, b)

IET, f'(¢) = 0for somec € (a,b)

do not assume
f' continuous

s.t. f'(c) =
Rolle’s Assume that
fia,b) = R
theorem and differentiable on (a, b)
fla) = f(b)

dc € (a,b)s.t. f'(c) =0

f continous and [a, b] compact
so f attains max/min values.

f(a) = f(b) both max and min:
f constant = f'(z) = Ofor allz
take any c € (a, b)
otherwise by IET

_ f)—f(a
F'(c) = (l))—()

a

Mean if [a, b] — R continuous h(z) = f(z) — k(z)
Value and f differentiable on (a, b) k(z) = f(b)ff(a) (x —a)+ f(a)
Theorem Je € (a,b) s.t. h(z) con. on [a bl and diff. on (a,b)

h(a) = h(b) =0

h()
OEHO)

) =
=0= f()*k’()
f'(e) =

Example:

flx) = {éiii Zg is NOT derivative.

Assume there exists F': R — Rs.t. F'(x) = f(x)

Darboux=- f attains all values in (0,1)
Contradiction!!
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Application to uniform continuity
Example:

f(x) = arctan(z) is uniformly continuous on R

MVT= Vz,y € R ,3c € (z,y) s.t.,arctan(x) — arctan(y) = arctan’(c)(z — y)
arctan(z) — arctan(y) = 1+%(m )

larctan(z) — arctan(y)| < |z — y|

Fore > 0 taked = ¢ to satisfy the definition of uniformly continuity.

Pathologies:
Formula Graph
h:R—R
h(z) = |z|forz € [—1,1] R .

h(z+2) = h(x)for allz € R
hn(z) = 5= h(2")

m=0 — m=1 m=2 —

0
2 -1 0 1 2 3

Everywhere continuous, nowhere differentiable.
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Lecture 12

SEQUENCE OF FUNCTIONS: f, : A - R

frn POINTWISE CONVERGENCE: to f : A — Rfor all fixedxz € Awhenlim f,(x) = f(z)
So for fixedz € A:Ve > 03N, , € Ns.t.n > N, , = |fn(z) — f(2)] <e

frn UNIFORM CONVERGENCE:to f : A — R if:

Ve > 0,there AN, € Ns.t.n > N, = |fo(x) — f(z)| <eVz € A

Note: independent of x € A

Familiar examples:

Name Picture proof
Classical fn(z) = 2"
. {Oifa: <1
Example fz) =lim fp(x) =1 .. onA=1[0,1]
lifx =1
n=1 n=2 n=3 ——
00
€ > Qarbitrary.
r=0Vaz=1takeN,, =1
n > Ne,x = ‘fn('r) —f(JU)‘ =0<e
0 <z <1Take Ny > llggi
0> New = [fal@) - f(@)] = 27 — 0] = a7 < &
Observe how N depends on both e and z!
Triangle
sequence

{2n:pif0§x§ L
folz) =q2-2nzif L <z <1
0ifL <x <1
Then f(z) = lim f,,(z) = Ofor allz € [0, 1]
0 <z <1: take Ne ;> %
n>Nep=L<z=|fn(z)— f2))=10-0[=0<¢
Observe how N depends on z!
z=0: take N, , =1
N> New = | fule) = f@)| = 0-0] =0 <e

The classic example and the triangle inequality does not converge uniform, because we can find a
value of ¢ for which the statement does not hold, but it must hold for alle > 0 to converge uniform.
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A useful characterization:

Theorem: consider f,, : A — R then: f,, — f uniformly < lim(sup | f,(z) — f(z)]) =0

PROOF:

z€A

=

<=

fore > OtheredN. € Ns.t.
n> N; = |fn(x) 7f(x)| <evVreA

Sosup [fn(x) — f(z)| <€
z€A

Fore > OtheredN, € Ns.t.
n> N. = sup |fu(z) — f(z)| <€
TEA

= |fu(z) — f(x)|<eVrec A

Example:
1: 2:
On A = [0, 1] the sequence f,(z) = 2™ The triangle sequence does not
Does not converge uniformly to f(z) = ?ii f 1 converge uniformly to zero
Reason:for alln € N we have since sup |fn(z) — f(z)] = sup fao(z)=1
z€[0,1] z€[0,1]
sup |fn(x) = f(z)] = sup 2" =1
z€[0,1) z€[0,1]
3: 4:
n a”
fn(m):(l_x)x —0 fn(iﬂ)zm_m

uniformly on [0, 1]
Calculus method: f, (z) maximumQz,, =

sup |fn(x) — 0| = fu(zn)
z€[0,1]

_n_
n+1

1
i) <7 — 0

Preservation of continuity:

Assume f,, : A — R satisfies:

(1) fr, = f uniformly on A
Then f is continuous at ¢
Moral: uniform convergence preserves continuity!
Proor:

uniformly on A = R

(2) fn is continuous atc € A for alln € N

For,e > 0 there exist: N € Ns.t.|fx(z) — f(z)| < i, for allz € A
<3

§>0s.t.]z—c| <d=|fn(x) = fnle)| <
If|z — ¢| < ¢ then:

3

|f(z) = f(o)] = |f(z) = fn(x) + fn(x) — fn(c) + fa(e) = f(o)]
<|f(@) = fn@)| + (@) = fn(e) + | fn(e) = fle)l < e+ je+de=¢

Example:

The sequence f,,(z) = 2™ does NOT uniformly converge to:

Oifr <1
f(x) o {1ofx: 1

on the set A = [0, 1] because each f,, continuous at z = —1 but lim f not.
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Lecture 13

CAUCHY CRITERION: Following statements equivalent:

The following statements are equivalent:

(1) fn converges uniformly on A

(2) for alle > 0 there exists N. € Ns.t.n,m > N = |f,(x) — fm(2)] <eVr € A
PROOF:

1—2 2—1
For alle > 0,dN. € Ns.t. for alle > 0 there exists N, € Ns.t.:
n>Ne = |fu(z) = f(z)| < §Vr € A n,m > Ne = |fn(x) — f(z)| <eVz e A
n,m > Ng = |fn(x) — fm( )| — f(z) = lim f,(z) ,exists Vo € A

= |fu(2) = f(2) + f(z) - ( ) nem = Ne= fo(z) —€ < fn(2) < fu(z) +eVr e A
< |fal@) — f0)] + [f(2) = fm(@)|

<s5+5=¢VxecA n>Ne= folx) —e < f(z) < fo(z)+e Ve A
So (2) Wherem — oo
n>Ne = |fa(z) — f(z)| <eVz e A
So (1)

UNIFORM CONVERGENCE PRESERVE DIFFERENTIABILITY?
Counter example: f,(z) = /22 4+ L — |2| uniformly on [-1, 1]
Every f,, is differentiable at z = 0, but the limit is NOT.
Lemma: assume that:

(1) fn : [a,b] = R differentiable for alln

(2) fI converges uniformly on[a,b] (note the prime)

(3) fu(xo) converges for some zg € [a, b]

Then f,, converges uniformly on [a, ]

PROOF:

for eache > 0 there exists Ny, No 6 Ns.t.:

n,m > Ny = |fl(x) — fl.(z )|< e - vV € [a,blandn,m > Na = | fn(20) = fim(z0)| < §
Claim:n, m > max{Ny, Na} = \fn( )— m ()| < eV € a, b

PROOF OF CLAIM:

Apply MVT tog = fn — fm

g9(z) = g(x) — g(z0) + g(20)

g(x) = g'(¢)(x — zg) + g(xp) ¢ between x and

Triangle inequality:

lg(@)] < 1g'(c)] - |2 — ol + [g(x0)| = |g'(c)] - (b —a) + [g(z0)]
|fn(2) = frm(2)| < |fn( ) — [ ()] (b= a) + [ fulz0) = frm (o)
(@) = F(@)] < spis - (b—a) + 5 < 5+
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Theorem: If:
1. fn : [a,b] = R differentiable for alln
2. fI, — ¢ uniformly on[a, b]
3. fn(zo) converges for somezg € [a,b]
Then there exists a differentiable f : [a,b] — Rs.t. f,, — f uniformly and f' = ¢
Moral: (lim f,,) = lim(f,)

PRrROOF:
Theorem at the top of this page:
Lemma gives f,, — f uniformly Let ¢ € [a,b]ande > 0 be arbitary
on [a, b] for some f To prove: there exists§ > 0s.t.
O0<l|x—cl<d= %79(0) <e
Part 1a Part 1b

Proof part 1b:

By using the triangle inequality we find the following 3 parts:
N € Nand§ > 0s.t.:

Part statement Proof
2a f(mx):z(C) _ fn(ajm):fn(c) < % (f'm(l)_fn(i)x):é.ﬂn(c)_fn(c))’ — ‘f’r/n(a) _ f"/l(a)‘
JdN; € Ns.t.

n,m > Ny = |f.(x) = f,(2)] < 5V € [a,b]
Order limit theorem withm — oo

n2 Ny = [HE0  Lho) <o
2b [fn(0) —g(0)] < 3 n2> Ny = |fu(c) —g(c)l < §
2c W—f;(c)‘ < sfor0<|z—cl<d fixn = max{Ny, No}and § > 0s.t.

O<|z—cl<d=

fn(@)=fn(e) f/ (C)‘ < %

Because we proved statement 2a,2b and 2c, we can say that statement 1b is true, we know that 1a
is true (because a direct conclusion from a lemma), and therefore the theorem is true.
SERIES OF FUNCTIONS: Let f, : A — R ands, = f1 + ...+ f, then:

o0
(-) >° fn — f poinstwise means s, — f pointwise.
n;l
(-) 3 fu — f uniformly means s, — f uniformly.
n=1
CAUCHY CRITERION: the following statements are equivalent:

(1) > fn converges uniformly on A

n=1
(2) for alle > 0 there exists N € Ns.t.
n>m>N=|fpt1(x) +... 4+ fu(z) <cforallz e A
Proor:
Follows from: |$,,(x) — sp(z)| = | fmt1(z) + ... + fu(2)]
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WEIERSTRASS TEST: assume that:
(1) |fn(z)] < Cpfor allz € A

(2) > C, converges.
n=1

o0
Then Y f, converges uniformly on A

n=1
Proor: for allz € A we have:
$n(2) = $m (@) = | frn1(2) + ...+ ful(@)| S O + ...+ Cp
Cauchy criterion for Y C, = Cauchy criterion for s,

n=1

PRESERVATION OF CONTINUITY: assume:
o0
(1) >° fn— f uniformly on A

n=1
(2) fn is continuous on A for alln
Then f is continuous on A
Proor:
Sn = f1+ ...+ fn is continuous on A for alln € N
$p — f uniformly — f is continuous on A
PRESERVATION OF DIFFERENTIABILITY: Assume:
(1) fn : [a,b] — R is differentiable for alln

(2) > f], — ¢ uniformly on[a, ]
n=1

(3) 3> fa(xo) converges for somexq € [a, b]

n=1

Then there exists a differentiable f : [a,b] = R s.t. > f, — f uniformly and f' = > f/
n=1

n=1

Example:

1:

0

-1 0 1 2 3

Same graphs as before:
Claim: f,,(z); = 5=h(2"2) = | fu(z)| < 5 for allz € R

o 1
> 5w converges.
n=0

o0
Weierstrass test = > f,, converges uniformly on R

n=0
fn continuous onR for alln € N= f continuous on R
X sin(27z) . 1 .
2: f(z) = Zo s én 2) s differentiable on every [—c, c]
=

() fu(z) = SEH(Q"I)/?)" is differentiable forn € N
() @) < (3)" Ve € [—¢,d

o0
Weierstrass= Y f!(x) converges uniformly on[—c, c|
n=1

(oo}
(=) >° fa(x) converges atx = 0 Apply term-wise differentiability Theorem.
n=1
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Lecture 14

o0
POWER SERIES GENERAL FORM: Z anr™ = ag + ar1x + asx? + a3z3 +...
=0
5
Pointwise convergence thm: > a,2"

(e}
converges at ¢ # 0= 3 |a,z™| converges for |z| < |¢|
n=0 n=0

PROOF:
o0

> apc™ converges = lima,c" =0
n=0

= (anc™) is bounded.

= 3dM >0 s.t.|lapc”| < M,VneN

lanz"| = |an(c- )| = |anc| - ’%‘n <M- ’%}H,Vn eN
Note |z| < || = |%] <1

Therefore we see that |a,z"| < M

So Apply comparison test:

S , 00
> M‘%|" converges = > |a,x™| converges.
n=0 n=0

RADIUS OF CONVERGENCE: R when R > 0

() |z| < R = PS converges at =

() |z| > R = PS diverges at x Computing the radius.
(-) RooT TEST: L = lim {/|a, | existsthen R = 1

(-) RATIO TEST: L = lim ’%
(-) L =107 then R = 00

PROOF:

lim {/|anz™| = L|z| Vo € R fixed.

For alle > 0 there exists N € N s.t.n > N =

= Llz| —e < {/|apz™| < Llz|+ ¢

= (Llz| — &)™ < |apz™| < (L]|z| + &)™

exists, then R = %

¥ lanx™| — L|a:|’ <e

T <t r> 7
Picke <1 — L|z| picke < L|z| — 1
o0
Liz|+e<1= > (L|z| +¢)™ converges. | Llz| —e > 1 = (L|z| — &)™ unbounded.
o n=0
= > |apz™| converges. = |apz™| unbounded.
" o0
= Y a,x™ converges. = > apz™ diverges
n=0 n=0
Example:
Root test: Ratio test:
s} n s} n
>_ 7.z Radius of convergence: > 5
n=0 n=1 R
_ 1 n _ 1 _ 1 An+1 __ n
Ap = 5n2 = ‘an‘ — Bn an = 32 an  (n+1)2
=L=0 L=1
= R=00 R=1
=>z<R converges for value in closed interval [—1, 1]
= PS converges.
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Theorems:

BEWARE OF THE BOUNDARY POINTS:
Example Radius atx =—R atz =R

" R=1  divergent divergent.
1

183 18

%m” R=1 convergent divergent
1

NJEE
T
E

——z" R=1 divergent  convergent.

3

Nkl

#x" R=1 convergent convergent
n=1

o0 [e.°]
Theorem uniform convergence: . |a,c"|convergent = > a,a™ uniformly convergent on [—|c], |c|]

n=0 n=0
PROOF:
For |z| < |c| we have: |an,z"| = |an| - |2]" < |an| - |e|” = |anc™| =: M,
o0 o0
Apply Weierstrass’ test: Y, M, convergent= > a,a" uniformly convergent on [—|c|, |c|]
n=0 n=0

[&.°]
Continuity of the limit: Corollary: ) a,z™ continuous function on (—R, R) PROOF: Takez €

n=0
(=R, R)and |z9| < ¢ < d < R then:
PS convergent at d =PS absolutely convergent at ¢
= PS uniformly convergent on [—c, ¢] = PS continuous on [—c¢, (]
Each a,z™ is continuous!
= PS continuous at 9 = PS continuous on (—R, R)
CONTINUITY OF THE LIMIT (2):

o0 o0
> |lanR™| convergent = ) a,z™ uniformly convergent on [—R, R]
n=0 n=
In particular, the PS is continuous on [— R, R]
What if convergence is conditional at X = Rorx = —R
n n

Lemma:ifs, = u; + ...+ u, then: Y upvr = $pvnt1 + Y. Sp(Vk — Vkt1)

k=1 k=1
PROOF:
Set So = 0 then: UV = (Sk — Skfl)vk = sk(vk - ’l}k+1) + SkUk+1 — Sk—1Uk ,Vk = 1, ey

n n
These last two terms are called the telescoping terms. > ugvg = Spvni1+ D Sp(vk —vg41) Abel’s
k=1 k=1
Lemma: Assume that (u,) and (v,,) satisfy:

Mjur+...+y| <CVneN (2)0<vy41 <v,,VneN

n
> ukvk‘ <Cuv;,Vn €N
k=1

PROOF:

Then

n
> upvg| =

k=1

Sp =U1 + ...+ Uy S0

n
SpUn+1 + Y Sk(Vk — Vgt1)
=1

n
S |Sn‘vn+1 + Z |Sk|(’Uk; — Uk+1)

M=

UKV
k=1 k=1
n n
> Uk | < C(vngr + 32 (v — vpt1)) = Cuy
k=1 k=1
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Abel’s theorem:
(1) PS converges atx = R = PS converges uniformly on [0, R]
(2) PS converges at x = —R = PS converges uniformly on [—R, 0]
PROOF: only part 1:

n
for alle > 0 there exists N € Ns.t.n>m>N=| Y arRF| <¢
k=m+1
e lahk _ JagRFiftk>m+1
take any x € [0, R] and set: vy = (%)", then: uy = {Ootherwise
n n

Abel’s lemma — Cauchy criterion: | Y- agz®| = |3 ypvp| <& % < eV € [0, R]

k=m+1 k=1
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DIFFERENTIATION THEOREM:
o0 o0
> anz™ convergent on (—R, R) = > na,x™ ! convergent on (—R, R)
n=0

n=0

PROOF:

|c| < 1then there exists M > 0s.t.|nc™'| < M ¥n €N

Let |z| < t < R then: [na,z" | = %(n|%|n71)|ant"\ < Mig,t|
Apply comparison test.

DIFFERENTIATION TERM BY TERM:

o0 &)
For any PS with radius R we have: (Y a,2") = Y na,z2"~ ! Vz € (-R,R)
n=0

n=0
Proor:
let0 < ¢ < R then:
o0 o0
> na,x""! converges uniformly on[—c,c]so Y anz™ converges atz =0

n=0 n=0
Now apply Term-wise differentiability Theorem.
Examples:

1:
for allz € (—1,1) we have:

= 1

n _
>t =1
n=0
- 1

n— —

Z n T (1—x)?
n=0

. _ 1 . .
Takingr = ; gives:
o0 o0

n _ 1 Iyn—1_1 __ 1 _ 4
2147742’”(4) — 2 (1,%)2*9
n—=

n=0
2:
For allz € (—1,1) we have:

> SR f()

S~ s fia) = 2o = f(2) = log[1+ 3| + C

n=1
Note that
-)C = f(0) =0 so f(z) =log|1 + z|
-) Abel’s Theorem: = PS in the original equation uniformly on [0, 1]
=) Hence, PS in original equation is continupus atz = 1
CUn = lim 32 CR0" = lim f(x) = f(1) = log(2)
T—

n z—1 "1

N

n=1
Conclusion:log(2) =1— 3+ 3 — T +...
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Lecture 15

:Z:,’n

n

SO pln)
TAYLOR SERIES of f around z = 0: given by: > ! !(O)

n=0

PARTIAL SUM: 8, (7) = Y %ml
k=0

REMAINDER: E, (z) = f(x) — sn(x)
Lemma: t variable, x fixed. Assume that:
(-)x > 0andh(t) isn + 1 times differentiable on [0, ]
(-)h(z) = 0and A®)(0) = 0 for allk =0,...,n
Then A"V (c) = 0 for somec € (0,z)
PROOF:
Repeated application Rolle’s theorem:
h(0) = h(xz) = KW' (c1) =0 for somec; € (0, )
R (0) = h/(c1) = h"’(c2) = 0 for someca € (0,cy)

R (0) = A (c,) = A"+ (¢, 41) = 0 for somec, 1 € (0,¢,)

Theorem:

forn € Nandz > 0, there existsc € (0,2)s.t.: B, (z) = f((::)(,c) antl

Note: ¢ depends on bothn and z!

PROOF:

Fixxz > 0and consider: h(t) = f(t) — sn(t) — (%)t""‘1

note that h(z) = 0and h®)(0) =0 fork =0,...,n

Previous lemma gives ¢ € (0, z)s.t.: fF(c) — 5%”4'1)(0) —(n+ 1)'(%) =0
We can claim that s%nﬂ)(c) =0

(n+1) c
F(@) = sn(a) = L (Pantt

X )
TAYLOR SERIESof f aroundz = a: ), fT,(a)(x —a)"
n=0 )

(n+1)
LAGRANGE REMAINDER: for z > aexists ¢ € (a,x)s.t. By (x) = f(x) — sp(x) = % ntl

(x —a)
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Examples:

Euler:
Taylor series for f(x) =e
For x 7é 0 there existsc € (—|z|, |x|) s.t.:

n_ f"2) ax = f0(0)/n!

0 e’ e’ Z k'x + (n+1)‘$ o
1 v e’ For anya > 0 we have:

2

SUPge[—a,a] €7 — kz Hx <e®. 7&“)! — aasn — 00
=0

The taylor series of f converges to f on[—a,a]!

sin(x)

Forz # 0 there existsc € (—|z|, |x|) s.t.

_ [ pntl ||
[Ba(@)] = | Fopistantt| < gy

Remainder converges to0 uniformly on any interval [—a, al:

sup |En(z)| < (ZTT)' — 0asn = oo
z€[—a,a) ’

Conclusion
sin(z) = — g8+ Fa° —F27+ ... Vz eR

When we make a graph of these taylor series, we see that the taylor series approxiomate the sinfunction
better for every higher value ofn
Natural logarithm:

f@) =1 +z)= f(z )_Mv cN

52y
- . B s D (=n" nt1
Forz > Oexistsc € (0,z)s.t.:In(1 +z) = kZ::1 T+ oY
arctan(x)
On[-1,1] we havearctan(z) =z — 32° + 2° — 127 4.

The convergence is uniform on [0, 1] but not on[— 1 ,0]
Forz =1 weget%:l—%+%f%+“,

Counterexample:
- eiw% ifx #0 n -
flz) = 0ife — 0 = f*(0)=0VneN

The Taylor series of f does not converge to f
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Applications:

1

[ €=1dr ~1.3179 accoarding Wolfram Alpha.
0
Approximating square roots by an example

Vacentered atz =1z =1+ 3(z — 1) — 3(z — 1)* 4 E3(x)
This gives v/5 ~ 1 which is not true.

Centered atz =2z =2+ X(z —4) — & (z — 4)? + F3(2)
Then /5 gives 2.234375, which is really close to the real value.

Approximating integrals:

Forz > 0 existsc € (0,z)s.t.:

T _ T e’ n+1
e = YT (n+1)!33
k=0
e’ —1 _ n
¥ B kX_: "+1)'m
1 oy 'n,i 1 1
e’ — _ n
f T dr = Z &k f n+1 [CEIRd dx
0 k=1 0

1 -
Upper bound Right part: R,, = [ (nefbl)!x"dac
0

1 1
e n 3 n _ 3
Of(n+1)1“7 dr < of 1" AT = G

= 1.31763 ... Where (R5 < 0.001)

1 5
When we fill it in again we see that: [ <Ldz ~ Z e
0 k=1
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Lecture 16

PARTITION: a partition of [a,b] is a set of the form: P ={a =xo <21 <22 < ... <z, = b}
REFINEMENTS: @ refinement of Pif P C @ provided that P and @) partitions same interval.

Let f : [a,b] — Rbe bounded and P be a partition of [a, b] then:

LOWER suMof f w.r.t P:my = inf{f(z) : x € [zx_1,zs]}

Approximate area below graph of f L(f, P) = i my(Tr — Tr—1)

UPPER sUMof f w.r.t P: My, = sup{f(z):z € [a]:gk:,ll,xk]}

Approximate area above graph of f U(f, P) = ki My (xr — xg—1)
=1

My,
__

- v

a=Ig Th—1 Tk b=ux,,

L(f,P) <U(f,P) for any partition P of [a, b]

Example

1:

Py ={0,%,1,1} partition of [0, 1]
P, ={0,1,2} NOT partition of [0, 1]
P3 = {0, 3} NOT partition of [0, 1]
2:

P ={0,3,1} partition [0, 1]
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Relation upper and lower sums:

Lemma: if P C @ then:

() U(f,Q) — L(f,Q) < U(f, P) — L(f, P) PROOF:

~

R
my,

|
, |
my=mg T= T~~~
|
|
|
|
|
|
L

T
Tr_1 Tk

Only proof upper sum, lower soom works the samae way.

Refine P by adding one point z € [zp_1, x|

my, = inf{f(z) : ¢ € [vr—1,zk]}

my, = inf{f(z) : x € [z, 2]}

mj =1inf{f(x) : z € [xr_1, 2]}

We know that A C Btheninf A > inf B

mg(Tr — Tr—1) = m(xk — 2) + myp(z — zk — 1) <m)(xp — 2) + my(z — xx-1)
Then proceed by induction

Lemma: for any two partitions Py and P, we have: L(f, P1) < U(f, P»)

PROOF:Q = Pl UPZthenP17P2 C Q7 SO:L(faP1> < L(faQ) < U(faQ) < U(f?P2)

Best possible approximate area and riemann integral:

Assume f : [a,b] — R is bounded.

Let P denote the collections of all partitions fo [a, b]
U(f)=inf{U(f,P): PP} L(f)=sup{L(f,P): PeP}

Lemma: L(f) < U(f)

PROOF:

L(f,P) <U(f,P,) forall P;, P, € P

L(f) < U(f, P2) for all P, € P(take sup over P;)

L(f) < U(f) (Take inf over P»)

RIEMANN INTEGRABLE: bounded function f : [a,b] = Rand U(f) = L(f)

Notation:ff =U(f) = L(f) orff(a:)dx =U(f) = L(f)
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Integrability:

Theorem: The following statements are equivalent:
(1) f is integrable.

(2) or alle > Othere exists a partition P.s.t.U(f, P.) — L(f,P.) < ¢

PROOF:
(2)=(1)
U(f) <U(f, P)

Y = U = L) < U P) = L P <
This holds for alle > 0 soU(f) = L(f)

(1) =(2)

lete > 0and choose P; and P, such that:

L(f,P1) > L(f) = geand U(f, P2) < U(f) + 3¢

Because of the characterizations of infimum and supremium.
LetPE = P1 UPgthen:

U(faps)*L(fvps)SU(f7P2)7L(f7Pl):[U(faPQ)iU(f)]+[L(f)7L(f7P1)]<%5+%€:€

SOU(fvps)_L(f’Pe) <e

Continuous functions: f continuous on [a, b] = f integrable on [a, b]

Proor:
fis uniformly continuous on [a, b]

For alle > Othere exists 0 > 0s.t. |z —y| < d = [f(x) — f(y)| < 3=; for allz,y € [a,b]

Let P be a partition such thatzy — zp_1 < dforallk=1,...,n
There exists yx, 2k € [Tx—1, Zx] 8.t f(yr) = Mg and f(zr) = my
Note: [yr — 2| <0 = My —mp = f(yr) — f(2) < 555

U(f.P) — L(f,P) = 3 (Mg — my)(, — 251) < 75 élm -

k=1
=55 (@n—wo) = 555(b—a)=¢
SoU(f,P)— L(f, P) < £So integrable.

rife A1l
flx) = {Oifz L, s integrable on [0, 2]

Let 0 < € < 1and take the partition: P = {0,1 — %5, 1+ %5,2}
U(f,P)=2and L(f,P)=2— iesoU(f,P)— L(f,P)<e
2:

lifzx € Q
F@) =1 0ita ¢Q
Let P be any partition of [0, 1] then:

[Tk, 2k—1]NQ° # D= my =0forallk=1,...,n= L(f,P) =0
[Tk, 21| NQ# D= My =1forallk —1,...,n=>U(f,P)=1
So L(f, P) # U(f, P) and therefore not differentiable.

3:

flz) = ggi 28 is NOT integrable on [0, 1]

for any partition P of [0, 1] we have: U(f, P)— L(f,P) =

n

is not integrable on [0, 1]

S (My—my)(zi—zk-1) = Y wp(zr—zk-1) > Y 2(@p+zp—1)(TK—TK-1)

k=1 k=1 k

—

n
= kzl %(ivi—wi_l) = %
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Increasing functions:

Any increasing function f : [a,b] — R integrable.
For any partition of [a,b] we have:

My = sup{f(z) : @ € [zp—1, 2]} = f(ax)

my, = inf{f(x) : x € [zr—1,71]} = f(Tr_1)

An equispaced partition P gives:

EQUISPACED: Every interval has the same size.

U(f,P) = L(f, P) = 32 (Mg — mye) (s — mp_1) = 22 ; [F(o) — f(ar1)

k=1 '
= 0=0)(fO)=f@) _ gasn — oo

Example:

(%)

0

0 02 04 06 08 1
() {Oif:r =0

T)=191.: 1

E ife € (m,

Since f is increasing it is integrable on [0, 1]

%] for somep € N
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Lecture 17:

SPLIT PROPERTY: f : [a,b] — Rbounded andc € (a,b)then fintegrable on[a,b] < fintegrable
b c b
on[a,c]and [c,b]. In that case: [ f= [f+ [ f

PROOF

Part 1:

Lete > 0, and pick a paritition P of [a,b]s.t.U(f, P) — L(f,P) <e

Let P, = PU{c} then:U(f,P.) — L(f,P.) < ¢

P, is in fact the original partition where we add the point ¢

Then @ = P. N |[a,c] is a partition of [a, ¢] and:

m := Fintervals in Q

n := #intervals in P, Zm<n

m < n implies:

U(f,Q)—L(f.Q)= kzl(Mk*mk)(xk*Ik—l) < kZI(Mk*mk)(xk*Ik—l) =U(f,Pe)—L(f,P) <e
SoU(f,P.) — L(f,P.) < e, conclusion f integrable on [a, (]

Part 2:

Let Py and P, partititions of [a, ] and [c, b] s.t.: U(f, P;) — L(f, P;) < & fori=1,2
Then P = P; U P, is a partition of [a, b] and:

U(f.P) = U(f,P) + U(f, P»)

L(J,P) = L(f,P.) + L(j, P»)

U(f,P)— L(f,P) < 3+ e =¢

Conclusion: f integrable on [a, b]

Part 3: Leteand P, P, be as before:

b c b
JfF<U(f,P)<L(f,P)+e=L(f,P)+ L(f,P)+e < [ f+ [ f+e

Sowecanclaim:ffﬁjf—l—fbf

a a c
Because:z < y +e,fore > 0 thenz <y
Part 4:
Lete > 0and Py, P, be as before:

fcf+}§U(f,P1)+U(f,P2)<L(f,P1)+f,P2+E:L(f,P)+ESf:f—FE

c b
Sowehave [ f+ [ < [ f

8 —o

a
c

b c b b b
And because we have: [ f < [ f+ [ fAnd: [ f+ [ < [ fwe proved it.

a

term 1b 2020-2021 Page 49



Analysis, University of Groningen H.M. Goossens

Integrable, algebraic properties and order properties:

b a c
J INTEGRABLE ON A CLOSED INTERVAL [a,b]: [ f = — ffandff = Ofor allc € [a,b]

Corollary: regardless order a, b, c we have: f f= f f+ f f
Algebraic propertles Iff, g mtegrable on [a b] then ‘

1. f + gintegrable andf(f—!—g):ff—ng

b b
2. kf integrable and [kf =k [ ffor allk e R
Order properties: ‘ ‘

(1) f integrable on [a,b] thenm < f(z) <M =m(b—a) < | f < M(b—a)

8 —o

b b
(2) f, gintegrable on [a,b] and f(z) < g(z) for allz € [a,b] then [ f < [g

(3) fintegrable on [a,b] then |f|integrable and

f <fIfI

PROOF:

Taking P = {a, b} gives:
U(f,P)=(b—a)-sup{f(z):z € [a,0]} <
L(f,P) = (b—a) - inf{f(z) : x € [a,b]} = m(b—a)

(2) Since 0 < g(x) — f(x) for allz € [a,b] we have:0- (b — a) Sf(g—f):ogfg—;f

(3) P any partition of [a, b] and:
My, =sup{f(z) : z € [xp—1, 2]}  mp =inf{f(x):x € [Tr_1, 2]}
M = sup{[£(@)] : 2 € o1 zal} w0l = (| F(@)] : 7 € [2h_1, 2]}
Claim: M}, — m}, < My, —my,
For alle > Oexistsy, z € [zr_1, Tk] s.t.
ML~ 1 < |f(y)
my, + 3 > | f(2)]
My —mi —e <|F )| = |f() < 1] (W) = F(2)] < My = s0 My —mj, < My —my
U(lf1, P)=L(|f], P) = Z(M’ my) (@ —wp—1) < Z(Mk my)(zx—ar-1) = U(f, P)=L(f,P) <¢

k=
Hence f integrable = | f | 1ntegrable

b
=\[f

9%@
:‘%e-

b
—|f(@)] < f(=) < (@)= - [If]

b
< [lf]
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The fundamental theorem

Part 1:
Assume that:
(1) f is integrable on [a,b] (2) F differentiable on [a,b] and F'(z) = f(z) Yz € [a,b]

Thenfbf =F(b) — F(a)

Part (12:
Let f integrable on [a, b] and define:
= [ F(t)dt wherex € [a,b]
Then:
(1) F uniformly continuous on [a, b]
(2) If f is continuous at cthen F'is differentiable at cand F'(c) = f(c)

PROOF PART 1:
Let P be any partition of [a, b]:
F(b) = F(a) = Y [F(ax) = F(zr-1)]

Because: F'(b) — F(a) = F(x,,) — F(0)
MVT wherety € (xp— 1,xk)

Z fte) (@ — 2p—1) < Z My(zy — 2p—1) = U(f, P)

F(b) — F(A) > L(f,P) by smrular proof, so we have:

Taking sup/inf over all partitions gives:
L(f) < F(b) — F(a) < U(f)

Since f integrable, it follows that:

L(f) =U(f) = F(b) — F(a)

PROOF PART 2:

Statement 1:

since f integrable on [a, b] there exists M > 0s.t.: |f(z)| < M Vx € [a,b]

We can not compute integrals of unbounded functions so that is the reason we can say that.
Ifz,y € [a,b] withz > y then:

F(z) - F(y)] = ‘f f(t)dt

For givene > Otaked = 47 So therefore, F' uniformly continuous on [a, b]
Statement 2:
forz # ¢ we have:

x x
E@)=F(e) _ L [ f(t)dt—f(c) = = [ f(t)— f(c)dt Lete > Obe arbitrary and pickd > 0s.t.:

< [17()ldt < Mz —y|
Yy

Tr—c Tr—c Tr—c
c

II—CI<5:‘|f( )= flo)] <e

Since [t — ¢| < |z — ¢| < dit follows: ‘% - f(c)‘ = ﬁ

x

F 10~ it < ple = ol <=

c

So | Hl@)=F(e) f(c)‘ <e

r—c
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