
Analysis, University of Groningen H.M. Goossens

Some basis:

Proof by contradiction: proof opposite statement false, therefore original statement true.

Sets:

Set: collection ofElements: objects in a set.

A&B sets:
Name Notation Meaning

x ∈ A x an element ofA
x 6∈ A x not an elemnt ofA

Union A ∪B x ∈ A and/orx ∈ B
Intersection A ∩B x ∈ A and∈ B
Empty set: ∅ Set contains no element.

E andS areDisjoint E ∩ S = ∅
Complement ofA Ac = {x ∈ R : x 6∈ A} the set of all elements inR , but not inA

Subset A ⊆ B All elements inA are also elements inB
Supset B ⊇ A B contains all the elements ofA

A = B WhenA ⊆ B andB ⊆ A
De Morgan’s Law (A ∩B)c = Ac ∪Bc Proof? Exercise 1.2.5

(A ∪B)c = Ac ∩Bc
A1 ⊇ A2 ⊇ A3 ⊇ . . . all elements ofA2 also elements ofA1 and so on (soAn+1 elements ofAn)

Functions and real numbers:

A&B are sets,a, b real numbers.
Definition 1.2.3: Functions:
Function: fromA toB maps each elementx ∈ A with a single element ofB
Notation: f : A→ B givenx ∈ A and expression f(x) represents elementB assiociate withx by f
Domain:A&Range: subset ofB given by: {y ∈ B : y = f(x) for somex ∈ A}

Theorem 1.2.6:
a, b equal iff for every real number ε > 0, it follows |a− b| < ε
Proof:
(1):If a = b then |a− b| < ε
|a− b| = 0 and because ε > 0 we know |a− b| < ε
(2): If |a− b| < ε then a = b
Assume a 6= b so ε0 = |a− b| > 0 must be true, which is the case because ε > 0
But |a− b| < ε0 and |a− b| = ε0 can not be both true.
Therefore a 6= b unacceptable⇒ a = b

Induction:
IfS ⊂ N with: 1 ∈ S n ∈ N andn ∈ S n+ 1 ∈ S thenS = N
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Analysis, University of Groningen H.M. Goossens

Lecture 1:

Lemma and proof:

|x| = max{x,−x}

Definition of an absolute value: |x| =
{
x ifx ≥ 0

−x ifx < 0

proof:
x > 0⇒ −x ≤ 0⇒ −x ≤ x⇒ max{−x, x} = x = |x|
x < 0⇒ −x > 0⇒ −x > x⇒ max−x, x = −x = |x|

Algebraic properties:

Name Rule Proof:

Product rule |xy| = |x| · |y|

x y xy conclusion
x > 0 y > 0 xy > 0 |xy| = xy = |x| · |y|
x > 0 y < 0 xy < 0 |xy| = x(−y) = |x| · |y|
x < 0 y > 0 xy < 0 |xy| = (−x)y = |x| · |y|
x < 0 y < 0 xy > 0 |xy| = (−x)(−y) = |x| · |y|

Quotient rule
∣∣∣xy ∣∣∣ = |x|

|y| Proof by yourself.

where y 6= 0 it is sufficient to show that
∣∣∣ 1y ∣∣∣ = 1

|y|
|a− b| = |b− a| |a− b| = |−(b− a)| = |b− a|

Inequalities:

Name Rule Proof

Lemma 2 |x| ≤ a⇔ −a ≤ x ≤ a

|x| ≤ a ⇔ max{−x, x} ≤ a
⇔ −x ≤ a andx ≤ a
⇔ x ≥ −a andx ≤ a
⇔ −a ≤ x ≤ a

Triangle |x+ y| ≤ |x|+ |y|
x+ y ≤ |x|+ y ≤ |x|+ |y|
−x− y ≤ |x| − y ≤ |x|+ |y|
|x+ y| = max{x+ y,−x− y} ≤ |x|+ |y|

inequality

Reverse ||x| − |y|| ≤ |x− y|

|x| = |x− y + y| ≤ |x− y|+ |y|
|x| − |y| ≤ |x− y|
|y| − |x| ≤ |y − x| = |x− y|
||x| − |y|| = max{|x| − |y|, |y| − |x|}

≤ |x− y|
triangle

Inequality
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Upper bounds:

Name Bounded above Least upper bound
Definition A ⊆ R is bounded above if: s ∈ R least upper bound ofA ⊆ R if:

∃b ∈ R s.t. a ≤ b and∀a ∈ A s upper boundA
b any upper boundA, and s ≤ b

Notation the number b is called an upper bound s = sup(A) called the supremum of the setA
Example A = { 1n : n ∈ N} = {1, 12 ,

1
3 , . . . , } A = { 1n : n ∈ N} = {1, 12 ,

1
3 , . . . , }

b ≥ 1 upper bound forA Claim: sup(A) = 1
Clearly, 1

n ≤ 1 for alln ∈ N
so 1 is an upper bound forA
if b is any upper bound forA

then a ≤ b for all a ∈ A
in particular, for a = 1 we have 1 ≤ b

Number Definition 1.3.1 Definition 1.3.2
Lemma 1.3.8:
if s is an upper bound forA then: s = supA↔ ∀ε > 0∃a ∈ As.t.s− ε < a
Proof part 1:

Proof part 1: Proof part 2:
Let ε > 0 arbitrary Let b upper bound forA

s− ε < s→ s = εnot upper boundA b < s then for ε = s− b exists a ∈ A s.t. b = s− ε < a
∃a ∈ A s.t s = ε < a b not upper bound, contradiction.

Hence s ≤ b implies s = sup(A)

Lower bounds

Name Lower bound: Greatest lower bound
Definition l is called a lower bound ofA ⊆ R if: i ∈ R is called the greatest lower

∃l ∈ R s.t.l ≤ a∀a ∈ A bound ofA ⊆ R if:
i lower bound forA and
l any lower bound forA

where l ≤ i
Notation i = inf(A)
Example { 1n : n ∈ N} any number l ≤ 0

lower bound forA
Number Definition 1.3.1

Lemma 4:
if i is a lower bound forA then: i = infA↔ ∀ε > 0∃a ∈ A s.t.a < i+ ε
Proof:Exercise 1.3.1

Maximum and minimum:

Definition 1.3.4 Maximum and minimum: real number a0 maximum of setA if a0 element ofA and a0 ≥
a for all a ∈ A
real number a1 minimum ofA if a1 ≤ a for all a ∈ A

Warning: sup(A) not always maximumA .For example sup{ 12 ,
2
3 ,

3
4 , . . . , } = 1 no largest element!

inf(A) not always minimumA. For example inf{1, 12 ,
1
3 , . . .} = 0, no smallest element.
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Lecture 2

The real line:

Name Set Ordening(<,=, >)? Algebraic operations?
Natural numbers N Yes +×

Integers Z Yes +−×
Rational numbers Q Yes +−× :

Real numbers R Yes +−× :
What is the difference betweenQ andR?
Q has many gaps. Numbers like

√
2, e, π are not inQ

Example:

By example that
√

2 6∈ Q
Theorem

√
2 6∈ Q

Proof: Assume
√

2 = p
q , with p, q ∈ Z and GCD(p, q) = 1

√
2 = p

q ⇒ 2 = p2

q2 ⇒ p2 = 2q2

So p2 is even, so p is even, say p = 2k
⇒ p2 = 2q2 ⇒ (2k)2 = 2q2 → q2 = 2k2

q2 is even so q is even.
GCD(p, q) 6= 1, at least 2

so proven by contradiction
√

2 6= p
q so

√
2 6∈ Q

Do least upper bounds exist?

We used the definitions we saw in the first lecture for least upper bound and greatest lower bound.

Red: the setA = {x ∈ Q : x ≤ 2}
Blue: the upper bounds forA that are inQ
Is this subset bounded above? Therefore we use a new axiom.

Definitions:

Axiom of Completeness (AoC): Every nonempty set ofR is bounded above has a least upper
bound.
Theorem 1.4.2:Archimendean property:
Consist 2 parts:

Theorem ∀x ∈ R ,∃n ∈ N s.t.n > x ∀y > 0 ,∃n ∈ N s.t. 1
n < y

Proof Not true?N bounded above Let y > 0 arbitrary
AOC⇒ α = supNwhereα 6∈ N Setx = 1

y

α− 1 not upper bound. By the first statement, existsN ∈ N s.t.n > x
Existsn ∈ N s.t.α− 1 < n⇒ α < n+ 1 Therefore 1

n <
1
x = y

n+ 1 ∈ N⇒ α Not upper boundN
Contradiction.
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Nested Interval Property closed interval:

Theorem 1.4.1:

[a1, b1] ⊇ [a2, b2] ⊇ . . .→
∞⋂
n=1

[an, bn] 6= ∅

Proof:
We have to show that∃x ∈ R s.tx ∈ [an, bn]∀n ∈ N
DefineA = {an : n ∈ N}

so we see that bn upper bound an
AoC gives us:x := sup(A) exists.

an ≤ x ∀n ∈ N Sincex =upper bound forA
x ≤ bn ∀n ∈ N Sincex = least upper bound ofA

x ∈ [an, bn] ∀n ∈ N

Nested Interval Property open interval:

The NIP does not work for open intervals:
Example:

Proof that for In = (0, 1
n ) we have that

∞⋂
n=1

In = ∅

Whenx ≤ 0 we havex 6∈ In foralln ∈ N
Whenx > 0 we have that ∃k ∈ N s.t. 1

k < x(by AP), And therefore,∃k ∈ N s.t.x 6∈ Ik
So in both cases we havex 6∈

∞⋂
n=1

In so
∞⋂
n=1

In = ∅

Rational and Real numbers:

Theorem 1.4.3: ∀a, b ∈ Rwith a < b ,∃r ∈ Q s.t. a < r < b
Proof:
(1) a < 0 < b then one nice r between it, namely the rational number 0
(2) 0 ≤ a < b (works also for b < a ≤ 0, by working with−a and−b)
∃, n,m ∈ N s.t.

1

n
< b− a

m− 1 ≤ na < m

⇒ m ≤ na+ 1 < n(b− 1
n ) + 1 = nb

Combine inequalities.
na < m

m < mb

}
⇒ na < m < nb⇒ a < m

n < b

m
n ∈ Q so there exists indeed r ∈ Q s.t. a < r < b

Existence of square roots:

∃α ∈ R s.t.α2 = 2
Proof:
defineA = {t ∈ R : t2 ≤ 2} andα = supA,then:

α2 < 2 taken ∈ Nwith 1
n <

2−α2

2α+1 α2 > 2 taken ∈ Nwith 1
n <

α2

2α

So (α+ 1
n )2 = α2 + 2α

n + 1
n2 ≤ α2 + 2α+1

n < 2 (α− 1
n )2 = α2 − 2α

n + 1
n2 > α2 − 2α

n > 2
Soα+ 1

n ∈ A soα not upper boundA Also contradiction, therefore, the theorem is true
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Lecture 3

1-1 correspondence: counting without counting by making sets.

Functions:

Definition:

Function: f : A→ B maps each a ∈ A with single element b = f(a) ∈ B.
Domain:A&Range: ran(f) = f(A) = {f(a) : a ∈ A}&Codomain:B
Types:
Injective (one-to one) if f(a) = f(b)→ a = b
Surjective (onto) ifB = f(A) i.e.∀b ∈ B∃a ∈ A s.t. b = f(a)
Bijective: if f injective and surjective (unique corerespondence between elements ofA&B)

Allowed and not allowed.
Two elements in domain can correspond to 1 element in the codomain.
All elements in the domain must correspond to some element in the codomain.
An element in the domain can not correspond to more then 1 element in the codomain.

Cardinality:
Two sets same cardinality if there exists a bijective function: f : A→ B
Notation:A ∼ B
So 1 to one correspondence, so equally many elements in both sets.
If∼ equivalence relation:
A ∼ A
A ∼ B ↔ B ∼ A
A ∼ B andB ∼ C ⇒ A ∼ C
Proof:
(a, b) ∼ (1, 1) condsider.
g : (a, b)→ (−1, 1) so g(x) = 2x−a−b

b−a
Use (a, b) ∼ R and (−1, 1) ∼ R so (a, b) ∼ (−1, 1)

Example:

1:
N = {1, 2, 3, . . .} ∼ E = {2, 4, 6, . . .}
A bijection is given by: f : N→ E so:
f(n) = 2n
Moral: there are ”as many” even numbers as natural numbers.

2:
N ∼ Z
A bijection (exercise) is given by:
f : N→ Z

f(n) =

{
(n− 1)/2 ifn is odd

−n/2 ifn is even

Moral: there are ”as many” integers as natural numbers!
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3:
to prove that (−1, 1) ∼ R consider:
f : (−1, 1)→ R and f(x) = x

1−x2

f is injective:
f(a) = f(b)↔ a(1− b2) = b(1− a)2 ↔ a− b+ a2b− ab2 = 0↔ (a− b)(ab+ 1) = 0
(ab+ 1) can not be zero (because of the domain)→ a− b = 0→ a = b
Note: a, b ∈ (−1, 1)→ ab ∈ (−1, 1)

f is surjective:
f(x) = r ↔ x = r(1− x2)↔ rx2 + x− r = 0 is solvible for all r ∈ R
Note: discriminant = 1 + 4r2 > 0
x = −1±

√
1+4r2

2r
These equation has 2 solutions.
For any r ∈ R has unique solutionx ∈ (−1, 1)
Hence f is bijective.

Countable set

Countable setA ifA ∼ S for someS ⊆ N. Opposite: uncountable.
Example isZ
Lemma:
WhenA conuntable↔ ,∃f : A→ N injective.
Proof:

Proof part 1 Proof part 2
S ⊆ N

f : A→ S bijjective f : A→ N injective
So f : AN injective S = ran(f)

f : A→ S bijective.
Lemma:
A countable↔ g : N→ A surjective
Proof:

Proof part 1 Proof part 2
f : A→ S ⊂ N bijective take smallesna to make it unique.

∀n ∈ S∃unique an ∈ A s.t. f(an) = n ∀a ∈ A∃ smallesna ∈ N s.t. g(na) = a
Define g : N→ A Define f : A→ ranf ⊂ N,where f(a) = na

g(n) =

{
an ifn ∈ S
any element in A if n 6∈ S

g(na) = a and f(a) = na

The map g is surjective. The map f is bijective

Corollary:

B contable

f : A→ B injective

}
⇒ A countable.

A contable

g : A→ B surjective

}
⇒ B countable.

Theorem: An countable for alln ∈ N→
∞⋃
n=1

An countable.
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Example:

1:
N× N = {(n,m) : n,m ∈ N} is countable since: f : N× N→ N ,f(n,m) = 2n3m is injective.
Exercise:find a bijective map f :N× N→ N
2:
A,B countable→ A ∪B countable.
Assume: f : A→ N and g : B → N injective, and let:
h : A ∪B → N
h(x) =

{
2f(x) ifx ∈ A
2g(x) + 1 ifx ∈ B andx /∈ A

This maph is injective.

3:
An = {0,± 1

n ,±
2
n , . . .} countable.

Why?Q =
∞⋃
n=1

An is countable.

Uncountable sets

Theorem The interval (0, 1) uncountable R uncountable.
Proof Cantor (1891) Take g : N→ (0, 1) AssumeR countable

Then:

g(1) = 0.d11d12d13d14 . . .
g(2) = 0.d21d22d23d24 . . .

...

If g : N→ R surjective then:

Define t ∈ (0, 1) by t = 0.c1c2c3c4 . . . R = {x1, x2, x3, . . . , }wherexn = g(n)

Where cn =

{
2 if dnn 6= 2

3 if dnn = 3
So we show that ∃x ∈ R s.t.x 6= xn wheren ∈ N

Then t 6= g(2) for alln ∈ N Choose closed and bounded intervals as follows:

So g is not surjective

I1 s.t.x1 6∈ I1
I2 ⊆ I1 s.t.x2 6∈ I2

...

NIP⇒ ∃x ∈ R s.tx ∈
∞⋂
n=1

In

Butx 6= xn∀n ∈ N becausexn 6∈ In
Corollarly Qc = R \Q

Q countable,Qc countable
SoQ ∪Qc countable, contradiction.

There are more irrationals then rationals.

term 1b 2020-2021 Page 8



Analysis, University of Groningen H.M. Goossens

Lecture 4

tangent line, sequence and neighborhood:

Newton’s root finding method:

Where equation tangent line: y = f ′(x)(x− x1) + f(x) and:

Root of tangent line x2 := x1 − f(x1)
f ′(x1)

Iternative proces xn+1 := xn − f(xn)
f ′(xn)

forn = 1, 2, . . .

Sequence: a function with domainN
Can be written as infinte list of numbers:
(-) (1, 1

n ,
1
3 , . . .)

(-) (n+1
n )∞n=1 = ( 2

1 ,
3
2 ,

4
3 , . . .)x1 = 2 andxn+1 = 1

2 (xn + 1)

Limit of a sequence: (an) converges to a if ∀ε > 0,there∃N ∈ N s.t.n ≥ N → |an − a| < ε
Notation: a = lim an or an → a. So an gets arbitrarily close to a asn grows larger.

Neighborhood: (1) the setVε = {x ∈ R : |x− a| < ε} = (a− ε, a+ ε) for a ∈ R—,and ε > 0
Neighborhood: (2) ∀ε > 0,there ∃N ∈ N s.t.n ≥ N → an ∈ Vε(a) when an converges to a
So the tail of the sequence get trapped inVε(a)

Example:

lim 1
n = 0 lim( 6n+7

3n+1 ) = 2∣∣∣ 6n+7
3n+1 − 2

∣∣∣ =
∣∣∣ 6n+1
3n+1 −

6n+2
3n+1

∣∣∣ = 5
3n+1 <

5
3n

Let ε > 0 arbitrary Let ε > 0 arbitrary
by AP, ∃N ∈ N s.t. 1

N < ε by AP, ∃N ∈ N s.t. 1
N < 3

5ε

n ≥ N → 1
n ≤

1
N < ε n ≥ N →

∣∣∣ 6n+7
3n+1 − 2

∣∣∣ < 5
3n

→
∣∣ 1
n − 0

∣∣ = 1
n < ε ≤ 5

3N < ε
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Limit and (di)convergence

Standard limits:
Standard limit condition standard limit condition

lim 1
nα = 0 α > 0 lim cn = 0 −1 < c < 1

lim cnnα = 0 −1 < c < 1,α ∈ R lim n
√
c = 1 c > 0

lim n
√
n = 1 lim n!

nn = 0

Divergent sequence: a sequence that does not converge.
For example: (an) = (−1, 1,−1, 1, . . .) is divergent.

Definition of convergence: ∀ε > 0,∃N ∈ N s.t.n ≥ N → |an − a| < ε
Definition of divergence: ∃ε > 0 s.t.∀N ∈ N,∃n ≥ N s.t. |an − a| ≥ ε
Proof:
Choose ε = 1 andN ∈ N arbitrary.
Case: a ≥ 0n = 2N + 1→ |an − a| = |−1− a| − 1 + a ≥ ε
Case: a < 0n = 2N → |an − a| = |1− a| = 1− a > ε

Bounded Sequences:

Bounded sequence (an): if∃M > 0 s.t |an| ≤M∀n ∈ N

Theorem: (an) convergent→ (an) bounded.
Note: can be used to prove sequence diverges.
Proof:
Let a = lim an then for ε = 1 existsn ∈ N s.t.: by triangle inequality:
n ≥ N → |an| − a < 1 so ||an| − |a|| < 1 so |an| − |a| < 1 so |an| < 1 + |a|
ForM = max{|a1|, |an|, . . . , |aN−1|, 1 + |a|}we have |an| ≤M for alln ∈ N
So (an) is convergent leads to (an) is bounded.

Examples:

1: (an) = (1, 12 ,
1
3 , . . .) is bounded (takeM = 1)

2: (bn) = (1, 4, 9, 16, 25, . . .) is not bounded.
3: (an) = n2 diverges because it is not bounded.
ForM = max{|a1|, |an|, . . . , |aN−1|, 1 + |a|} we have: |an| ≤M for alln ∈ N
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Algebraic porperties:

if a = lim an and b = lim bn then:
Algebraic propertie Proof

lim(can) = ca (where c ∈ R)
lim(an + bn)a+ b |(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|

Let ε > 0 arbitrary:
∃N1 ∈ N s.t.n ≥ N1 → |an − a| < 1

2ε
∃N2 ∈ N s.t.n ≥ N2 → |bn − b| < 1

2ε
N = max{N1, N2} then:

n ≥ N → |(an + bn)− (a+ b)| < 1
2ε+ 1

2ε = ε
lim(anbn) = ab |anbn − ab| = |anbn − abn + abn − ab|

= |bn(an − a) + a(bn − b)| ≤ |bn(an − a)|+ |a(b)n− b|
= |bn||an − a|+ |a||bn − b| ≤M |an − a|+ |a||bn − b|

(bn) convergent and by that bounded.
ε > 0 gives:

∃N1 ∈ N s.t.n ≥ N1 → |an − a| < ε
2M

∃N2 ∈ N s.t.n ≥ N2 → |bn − b| < ε
2|a|

DefineN = max{N1, N2} then:
n ≥ N → |anbn − ab| < ε

lim(anbn ) = a
b if b 6= 0

Order properties:

lim an = a& lim bn = b then
Order property Proof

(1) an ≥ 0∀n ∈ N→ a ≥ 0 assume a < 0, for ε = |a| existsN ∈ N s.t.
n ≥ N → |an − a| < ε→ a− ε < an < a+ ε

an < a+ ε = 0 contradiction.
(2) an ≤ bn∀n ∈ N→ a ≤ b an ≤ bn then bn − an ≥ 0

b− a = lim(bn − an) ≥ 0→ b ≥ 0
(3) c ≤ bn∀n ∈ N→ c ≤ b an = c from 2

(4) a)n ≤ c∀n ∈ N→ a ≤ c bn = c from 2
Strict inequalities are not aways preserved.
∀n ∈ N 1

n > 0 but lim 1
n = 0

∀n ∈ N n
n+1 < 1 but lim n

n+1 = 1
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Lecture 5

monotone sequence:

Monotone sequence an if it is

{
increasing: an ≤ an+1 ∀n ∈ N
Decreasing: an ≥ an+1 ∀n ∈ N

(an) bounded& monotone→ (an) converges.
Proof:A = {an : n ∈ N} bounded.
(1) (an) increasing→ lim an = supA
Proof (CTD) assume (an) increases and let s = sup{an : n ∈ N}
Let ε > 0 aribtrary→ s− ε not upper bound.
ExistsN ∈ N s.t. s = ε < an. ForN ≥ N we have:
s− ε < aN ≤ an ≤ s ≤ sε → |an − s| < ε so an converges.
(2) (an) decreasing→ lim an = inf A (exercise!)

Examples:

1: (an) = (1, 12 ,
1
3 ,

1
4 , . . .) and (bn) = (1, 1, 2, 2, 4, 4, . . .) are monotone.

2: (cn) = (1, 0, 1, 0, . . .) is not monotone.
3: if an+1 =

√
1 + an with a1 = 1 then (an) converges.

(a) proof by induction that an is increasing.
Base case:
a1 = 1, a2 =

√
2 so a1 < a2

Induction step:
Assume an < an+1 for somen we have: 1 + an < 1 + an+1 →

√
1 + an <

√
1 + an+1 → an+1 < an+2

So an < an+1 < an+2 < . . . so increasing.
(b) proof by induction that (an) is bounded.
a1 = 1→ a1 < 2
an < 2 for somen→ 1 + an < 3→

√
1 + an <

√
3 <
√

2→ an+1 < 2
So a bounded sequence.
(c) Find lim an
By MCT, exists a = lim an a

2
n+1 = 1 + an so lim a2n+1 = lim(1 + an)⇒ a2 = 1 + a⇒ a = 1+

√
5

2
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Subsequences:

Picknk ∈ N s.t.: 1 ≤ n1 < n2 < n3 < . . .
If (an) is a sequence then: (ank) = (an1

, an2
, an3

, . . .) is called a subsequence of (an)
Note:nk ≥ k for all k ∈ N

Theorem: lim an = a→ lim ank = a
Proof:
Let ε > 0 arbitrary so ∃N ∈ N s.tn ≥ N → |an − a| < ε
Usenk ≥ k so you can say that k ≥ N ⇒ nk ≥ N
So |ank − a| < ε

Examples:

1:
(an) = (1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .)

Example of subsequences:
nk = k + 4→ (ank) = (1

5 ,
1
6 ,

1
7 , . . .)

nk = 2k → (ank) = ( 1
2 ,

1
4 ,

1
6 , . . .)

nk = 10k → (ank) = ( 1
10 ,

1
100 ,

1
1000 , . . .) 2:

(an) = (−1, 1,−1, 1, . . .) diverges:
Take 2 subsequences:
nk = 2k → (ank) = (1, 1, 1, 1, . . .) → lim ank = 1 nk = 2k − 1 → (ank) = (−1,−1,−1,−1, . . .) →
lim ank = −1
Different subsequences have different limits→ (an) diverges.

Bolzano-Weierstrass theorem:

Every bounded sequence convergent subsequence
Proof:
∀n∃M > 0 s.t. an ∈ [−M,M ]
Every bounded sequence has a convergent subsequence.

Halving proces: nested intervals: I1 ⊂ I2 ⊂ I3 ⊂ · · · ⇒ NIP→ there existsx ∈
∞⋂
n=1

In

Each Ik contains infinitely many terms of sequence.
Pickn1 ∈ N with an1

∈ I1
Pickn2 ∈ N withn2 > n1 and an2 ∈ I2
Pickn3 ∈ N withn3 > n2 and an3 ∈ I3
...

Note that
x ∈ Ik

ank ∈ Ik

}
→ |ank − x| ≤ length(Ik) = 2M

2k
→ 0

So convergent subsequence.
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add infinitely many numbers.

infinite series:
∞∑
k=1

ak = a1 + a2 + a3 + . . .

n−th partial sum: sn = a1 + a2 + . . .+ an
if sn = s then we say that the series converges to s
Euler’s famous example:
∞∑
k=1

1
k2 converges:

Proof:
sn = 1 + 1

4 + 1
9 + . . .+ 1

n2 so sn < sn+1 for alln ∈ N so sn < 2 for alln ∈ N
MCT: Limits sn exists.
Why is sn < 2 for alln ∈ N?
sn = 1 + 1

2·2 + 1
3·3 + 1

4·4 + . . .+ 1
n·n < 1 + 1

2·1 + 1
3·2 + 1

4·3 + . . .+ 1
n(n−1)

= 1 + (1− 1
2 ) + ( 1

2 −
1
3 ) + . . .+ ( 1

n−1 −
1
n = 1 + 1− 1

n = 2− 1
n

sn < 2− 1
n so sn < 2

Remark: since sn < 2 ,for alln the order limit theorem implies:
∞∑
k=1

1
k2 = lim sn ≤ 2

Euler found also:
∞∑
k=1

1
k2 = π2

6 and
∞∑
k=1

1
k4 = π4

90

For even power of k we know the solution of the infinite summ, for odd powers of k the solution is
unknown.

The harmonic series and intergral test for converges:

Harmonic series:
∞∑
k=1

1
k diverges.

Proof:
sn = 1 + 1

n + 1
3 + 1

4 + . . .+ 1
n

snk = 1 + 1
2 + ( 1

3 + 1
4 ) + ( 1

5 + . . .+ 1
8 ) + . . .+ ( 1

2k−1+1
+ . . .+ 1

2k
)

snk > 1 + 1
2 + ( 1

4 + 1
4 ) + . . .+ ( 1

8 + . . .+ 1
8 ) + . . .+ ( 1

2k
+ . . .+ 1

2k
)

= 1 + 1
2 + 2( 1

4 + 4( 1
8 ) + . . .+ 2k−1( 1

2k
)

s > 1 + 1
2 + 1

2 + 1
2 + . . .+ 1

2

s > 1 + k
2 for all k ∈ N

So sn is unbounded (because the subsequence is divergent) and therefore sn is divergent.
The integral test:
Assume that f : [1,∞)→ R is positive, continuous and monotonically decreasing.

Let ak = f(k) then
∞∑
k=1

ak converges↔
∞∫
k=1

f(x)dx <∞

Proof:where sn = a1 + a2 + . . .+ an because ak > 0 increasing.

So
n+1∫
1

f(x)dx ≤ sn ≤ a1 +
n∫
1

f(x)dx for alln ∈ N
∞∫
1

f(x)dx <∞so sn bounded& convergent,
∞∫
1

f(x)dx =∞so sn unbounded& divergent.
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Lecture 6

Cauchy sequence:

Name Theorem Proof or meaning.
Cauchy ∀ε > 0∃N ∈ N The terms get close to eachother
Sequence s.t.n,m ≥ N → |an − am| < ε

(an) convergent→ (an) cauchy assume a = lim an
For all ε > 0 there existsN ∈ N such that

n ≥ N → |an − a| < 1
2ε

m, n ≥ N → |an − am| = |(an − a)− (am − a)|
≤ |an − a|+ |am − a| < ε

Lemma (an) cauchy→ (an) bounded For ε = 1 there existsN ∈ N s.t.
n,m ≥ N → |an − am| < 1

fixm = N :
n ≥ N → |an − aN | < 1
→ |an − |aN || < 1
→ |an| − |aN | < 1
→ |an| < 1 + |aN |

ForM = max{|a1|, |a2|, . . . , |an−1, 1 + |aN ||}
we have |an| ≤M for alln ∈ N

(an) Cauchy→ (an) convergent Lemma gives (an) bounded.
BW gives (an) convergent subsequence (ank)

so a = lim(ank)
for all ε > 0 there existsN ∈ N s.t.

n,m ≥ N → |an − am| < 1
2ε

Fix an index:nk > N s.t. |ank − a| < 1
2ε, then:

n ≥ N → |an − a| = |an − ank + ank − a|
|an − a| ≤ |an − ank |+ |ank − a|

|an − a| < ε

Properties of series and algebraic limit theorem:

Infinite series:
∞∑
k=1

ak = a1 + a2 + a3 + . . .

n-th partial sum: sn = a1 + a2 + . . .+ an

Convergence:
∞∑
k=1

ak = A← by definition→ lim sn = A

Algebraic limit theorem:

if
∞∑
k=1

ak = A and
∞∑
k=1

bk = B then:

(1)
∞∑
k=1

cak = cA for all c ∈ R

(2)
∞∑
k=1

(ak + bk)A+B

Proof:
Apply analogous theorem for sequences to partial sums.
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Cauchy criterion:

Theorem: The following statements are equivalent:

(1)
∞∑
k=1

ak converges.

(2) for all ε > 0 there existsN ∈ N s.t.n > m ≥ N → |am+1 + am+2 + . . .+ an| < ε
Proof:
Note that: |sn − sm| = |am+1 + . . .+ an|
Statement 1⇔ (sn) converges⇔ (sn) Cauchy⇔ statement 2.
So equivalent.

Example:

∞∑
k=1

1
k diverges.

For anym ∈ N andn = 2m we have:
|am+1 + am+2 + . . .+ an| = 1

m+1 + 1
m+2 + . . .+ 1

2m > m
2m = 1

2

So: |am+1 + am+2 + . . .+ an| > 1
2

Hence, the Cauchy criterion fails. So, this serie is diverges.

Necessary condition for convergence:

Theorem:
∞∑
k=1

ak converges⇒ lim ak = 0

Proof:
Let ε > 0 be arbitrary.
There existsN ∈ N s.t.n > m ≥ N ⇒ |am+1 + am+2 + . . .+ an| < ε
n = m+ 1 andm ≥ N ⇒ |am+1| < ε

Warning: opposite is not true. Counterexample: lim 1
k = 0 but

∞∑
k=1

1
k diverges.

Note:
The previous theorem also gives a test for divergence.

Example:
∞∑
k=1

(−1)k+1 k+1
2k = 1− 3

4 + 4
6 −

5
8 + . . ..

Diverges since lim ak = lim(−1)k+1 · k+1
2k does not exist.

Comparison test

Theorem if 0 ≤ ak ≤ bk for all k ∈ N, then:

(1)
∞∑
k=1

bk converges→
∞∑
k=1

ak converges.

(2)
∞∑
k=2

ak diverges→
∞∑
k=2

bk diverges

Proof:
|am+1 + am+2 + . . .+ an| = am+1 + am+2 + . . .+ an
≤ bm+1 + bm+2 + . . .+ bn = |bm+1 + bm+2 + . . .+ bn|
Apply the cauchy criterion for series.
Note:
Theorem does not have to hold for all k but just for large k
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Example:
∞∑
k=1

1
k! converges

For k ≥ 4 we have: k! ≥ k2 → 1
k! ≤

1
k2

Apply comparison test:
∞∑
k=1

1
k2 converges→

∞∑
k=1

1
k! converges.

Alternating series test:

Theorem: assume:
(-) 0 ≤ ak+1 ≤ ak for all k ∈ N
(-) lim ak = 0

Then the alternating series
∞∑
k=1

(−1)k+1ak converges.

Proof:
Consider the partial sums:
sn = a1 − a2 + a3 − . . .+ (−1)n+1an
Proof (Ctd): the partial sums form nested intervals:
In = [s2n, s2n−1]⇒ I1 ⊇ I2 ⊇ I3 ⊇ . . .
NIP⇒ ∃s ∈ R s.t. s ∈ In foralln ∈ N
let ε > 0 be arbitrary.
ChooseN ∈ N s.t. a2N < ε then:
n ≥ 2N ⇒ s, sn ∈ In = [s2N , s2n−1]
⇒ |s− sn| ≤ s2N−1 − s2N
⇒ |s− sn| ≤ a2N
⇒ |s− sn| < ε

Example:

∞∑
k=1

(−1)k+1

k = 1− 1
2 + 1

3 . . . converges.

This follows from the alternating series test:
ak = 1

k satisfies 0 ≤ ak+1 ≤ ak and lim ak = 0

Absolute vs. conditional convergence:

Theorem:
∞∑
k=1

|ak| converges→
∞∑
k=1

ak converges.

Proof:
0 ≤ ak + |ak| ≤ 2|ak| for all k ∈ N

Comparison test→
∞∑
k=1

(ak + |ak|) converges.

Apply Algebraic limit theorem:
∞∑
k=1

ak =
∞∑
k=1

(ak + |ak|)−
∞∑
k=1

|ak| converges.
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Absolute and conditional convergent:
∞∑
k=1

ak is called:

(1)Absolutely convergent if
∞∑
k=1

|ak| converges. Example:
∞∑
k=1

(−1)k+1

k2

(2)Conditionally convergent if it converges, but
∞∑
k=1

|ak| diverges. Example:
∞∑
k=1

(−1)k+1

k

Geometric and telescoping series:

Geometric series: is of the form:
∞∑
k=0

ark = a+ ar + ar2 + . . .

Partial sums: sn = a+ar+ar2+. . .+arn−1 ⇒ rsn = ar+ar2+ar3+. . .+arn ⇒ (1−r)sn = a(1−rn)

For |r| < 1 we have: sn = lim (1−rn)
1−r = a

1−r

Telescoping series: of the form
∞∑
k=1

ak =
∞∑
k=1

(bk − bk+1)

Successive terms cancel eachother out:
sn = a1 + a2 + a3 + . . .+ an
sn = (b1 − b2) + (b2 − b3) + (b3 − b4) + . . .+ (bn − bn+1) = b1 − bn+1

The series converges⇔ (bn) converges.

Example:

1:
We have 0.999 . . . = 1
This follows from:

0.999 . . . =
∞∑
k=1

9
10k

= 1
10

∞∑
k=0

9( 1
10 )k = 1

10 ·
9

1− 1
10

= 1

2: 3:
∞∑
k=1

1
k(k+1) = 1

2 + 1
6 + 1

12 + . . . = 1
∞∑
k=1

1
k2+7k+12 = 1

4

Solution: Solution

sn =
n∑
k=1

( 1
k −

1
k+1 ) sn =

n∑
k=1

1
k2+7k+12 =

n∑
k=1

1
(k+3)(k+4) =

n∑
k=1

( 1
k+3 −

1
k+4 )

= (1− 1
2 ) + ( 1

2 −
1
3 ) + . . .+ ( 1

n −
1

n+1 ) = (1
4 −

1
5 ) + ( 1

5 −
1
6 ) + ( 1

6 −
1
7 ) + . . .+ ( 1

n+3 −
1

n+4 )

= 1− 1
n+1 → 1 = 1

4 −
1

n+4 →
1
4
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Lecture 7

open and closed intervals, open sets:

Closed interval: (endpoints included): [a, b] = {x ∈ R : a ≤ x ≤ b}
Open interval: (endpoints not included): (a, b) = {x ∈ R : a < x < b}
How to define open and closed for arbitrary sets?
Open sets:O ⊂ R open if ∀a ∈ O there ∃ε > O s.t.Vε ⊂ O
Recall:Vε(a) = {x ∈ R : |x− a| < ε} = (a− ε, a+ ε)
Note: the empty set ∅ is open by definition.

Example:

1:
the interval (c, d) is open. takex ∈ (c, d) arbitrary.
Take ε = min{|x− c|, |x− d|} ,thenVε ⊂ (c, d)
2:
The interval [c, d) is not open, forx = cno ε > 0 works.
Because for any ε ,c− ε is not in the interval.
3:
Q is not open.
Take ε > 0 arbitrary.

Taken ∈ N s.t. 1
n <

e√
2

and setx =
√
2
n

Thenx ∈ Vε(0) butx 6= Q

Unions and intersections:

Theorem:
(1) Union of arbitrary collections of open sets are open.
(2) Intersections of finite collections of open sets are open.
Proof:
(1) LetO =

⋃
i∈I

Oi with eachOi open.

x ∈ O → x ∈ Oi for some i ∈ I
There exists ε > 0 s.t.Vε(X) ⊆ Oi ⊆ O
(2) letO = O1 ∩O2 ∩ . . . ∩On with eachOi open.
x ∈ O → x ∈ Oi for all i = 1, . . . , n
For all i = 1, . . . , n there exists, εi > 0 such thatVεi(x) ⊆ Oi
For ε = min{ε1, . . . , εn} we have:Vε(x) ⊆ Oi for all i = 1, . . . , n
Warning: intersection infinitely many open sets need not to be open: Counterexample:On is open

for alln ∈ N: because
∞⋂
n=1

On = {0} is not open.

Warning:

The intersection of infinitely many open sets NEED NOT BE open!
Counterexample: )n = (− 1

n ,
1
n ), is open for alln ∈ N

∞⋂
n=1

On = {0} is not open!
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Limit points:

Limit point:x is a limit point ofA ⊆ R if:
∀ε > 0 ofVε(x) intersectsA in some point other thanx
Note: limit points ofA may or may not belong toA.
Theorem: The following statements are equivalent.
(1)x is a limit point ofA
(2) There exists a sequence an 6= x ,∀n ∈ N andx = lim an
Proof:
1→ 2
Letn ∈ N and set ε = 1

n
There exists an ∈ Vε(x) ∩A with an 6= x
Note that: |an − x| < ε = 1

n
2→ 1
for all ε > 0 there existsN ∈ N s.t.:
n ≥ N → |an − x| < ε
By assumptionAN 6= x andAn ∈ A we can conclude thatAn ∈ Vε(x)

Example:

1: 2:
x = 0 is a limit point ofA = { 1n : n ∈ N} x = 0 andx = 1 are limits ofA = (0, 1)

Take ε > 0 arbitrary. Forx = 0 take an = 1
2n

Taken ∈ N s.t. 1
n < ε Forx = 1 take an = n

n+1

Then 1
n ∈ Vε()) ∩A

Note: 0 /∈ A
Prove same result by means of definition.

Closed sets:

Closed test: contains it limits. Can’t leave set by taking limits.
Theorem: Equivalent:
(1)F is closed
(2) Every Cauchy sequence inF has its limit inF
Proof:
1→ 2 Let (an) ⊂ F be Cauchy.
x = lim an exists; now consider 2 cases:
(a): x 6= an then for alln ∈ N→ x is a limit point ofF → x ∈ F
(b): x = an for somen ∈ N→ x ∈ F holds trivially.
2→ 1 Letx be a limit point ofF
x = lim an with an ∈ F and an 6= x for alln ∈ N
(an) convergent→ (an) Cauchy→ x ∈ F by assumption.

Example:

[c, d] is closed.
Letx be a limit point of [c, d]x = limxn for some sequence (xn) ⊆ [c, d]
c ≤ xn ≤ d for alln ∈ N
Order limit theorem: c ≤ x ≤ d→ x ∈ [c, d]
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Closure:

Closure ofA:A = A ∪ {all limit points ofA}
Theorem:A is closed.
Proof:
(1)x limit point ofA andA ⊂ A thenx limit pointA
(2)A = A ∪ LLwithL = {Limit points ofA}
x limit point ofA→ ∀ε > 0 there∃y ∈ Vε(x) ∩A where y 6= x
So y ∈ A ∨ y ∈ L
(a) y ∈ A→ x is a limit point ofA
(b) y ∈ L
→ ∀δ > 0 there∃z ∈ Vδ(y) ∩A where z 6= y
Note:Vδ(y) ⊂ Vε(x) around{x} for δ small enough
→ x is a limit point ofA
Theorem completeness:
(1)O open⇔ Oc closed.
(2)F closed⇔ F c open.

Mutually exclusive:
Sets are not open OR closed. They can be neither open nor closed (0, 1] andQ, but they also can be
open and closed, R and ∅
So impossible to prove openess or closeness by contradiction.

Unions and intersections:
(1) uninons of finite collections of closed sets are closed.
(2) intersections of arbitrary collections of closed sets are closed.
Proof:

(1) (2)
F1, . . . , Fn closed F ci open for all i ∈ I

F c1 , . . . , F
c
n open→ F c1 ∩ . . . ∩ F cn open

⋃
i∈I

(Fi)
c open→ (

⋃
i∈I

F ci )c closed

→ (F c1 ∩ . . . ∩ F cn)c closed→ F1 ∪ . . . ∪ Fn closed. →
⋂
i∈I

Fi closed.

Warning: union infinitely many closed sets need not to be closed.

Counterexample:Fn = [− n
n+1 ,

n
n+1 ] closed for alln ∈ N but

∞⋃
n=1

Fn = (−1, 1) not closed.

example

1: 2:
ı̈fA = (0, 1) thenA = [0, 1] Q = R

All points ofA are limit points. Takex ∈ R and ε > 0 arbitrary.
Also,x = 0 andx = 1 are limit points. Q is dense inR: there exists r ∈ Q

Ifx < 0 orx > 1 thenx is not a limit point ofA such thatx < r < x+ ε
Hence∈ Vε(x) ∩Q and r 6= x

So, eachx ∈ R is a limit point ofQ
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Lecture 8

Sequential definition:

Compact set a setK ⊆ R is compact if every sequence inK has a convergent subsequence with a
limit inK
Theorem:
K ⊆ R compact↔ K closed and bounded.
Proof:

→ ←
Assume k not bounded (xn) ⊆ K

existsxn ⊆ K with |xn| > n for alln ∈ N K bounded, so (xn) bounded.
xn no convergent subsequence. B-w theorem: (xn) convergent subsequence.

Contradiction:K bounded. x = limxnk
K closed→ x ∈ K

x limit point ofK ,provex ∈ K
∃xn ⊆ K s.t.x = limxn

K compact ∃(xnk) converge to y where y ∈ K
(xnk)→ x as wellx = y ∈ K

Generalization of NIP:

Theorem: AssumeKn 6= ∅ is compact for alln ∈ N andK1 ⊇ K2 ⊇ . . . then
∞⋂
n=1

Kn nonempty.

Example:

1: 2:
Every finite set is compact [a, b] compact

LetK = {a1, a2, . . . , ap} Let (xn) ⊆ [a, b] arbitrary
Let (xn) ⊂ K be arbitrary. (xn) bounded.

Without loss of generalityxn = a1 BW-theorem: (xn) convergent subsequence (xnk)
for infinitely manyn ∈ N Letx = limxnk

Take (xnk) s.t.xnk = a1 for all k ∈ N Order limit theorem: a ≤ xnk ≤ b for all k
limxnk = a1 ∈ K a ≤ x ≤ b

3: 4:
(0, 1] not compact R not compact

Takexn = 1
n ∈ (0, 1] xn = n no convergent subsequence.

Every subsequence (xnk has
limxnk = 0 but 0 6∈ (0, 1]

5 6
Every finite set compact K = { 1n : n ∈ N} ∪ {0} not compact
K = {a1, a2, . . . , ap} K bounded: |x| ≤ 1 for eachx ∈ K
K bounded:x ∈ K → K closed ifx < 0 orx > 0 then

|x| ≤M = max{|a1|, . . . |ap|} x not limit point ofK (exercise!)
K closed: a1 < a2 < . . . < ap x = 0 limit point ofK and,x ∈ K

Kc = (−∞, a1) ∪ (a1, a2) ∪ . . . ∪ (ap,∞) open
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Open covers:

A ⊆ R and assumeOi ⊆ Rwhere i ∈ I are open.
Open cover:Oi ifA ⊆

⋃
i∈I

Oi

Theorem:K compact↔ K has a finite subcover.
Proof:

⇐ ⇒
On = (−n, n),n ∈ N open coverK Oi, i ∈ I open coverK without finite subcover

K ⊂ O1 ∪ . . . ∪ON = (−N,N) for someN ∈ N. Take bounded closed interval J1 ⊆ K
Therefore, K is bounded. Halving proces: constructJn s.t.:

J1 ⊆ J2 ⊆ J3 ⊆ . . .
K ∩ Jn not be convered by finitely manyOi’s

K ∩ Jn compact for alln ∈ N
Length Jn = J1

2n−1 → 0

Let y be a limit point ofK
∞⋂
n=1

(K ∩ Jn) 6= ∅

There exists (yn) ⊂ K with y = lim yn. ∃x ∈ K s.t.x ∈ Jn for alln
Assume y 6∈ K Letx ∈ K andOx = Vε(x) x ∈ Oi for i ∈ I and ε > 0 s.t.Vε(x) ⊆ Oi

ε = 1
2 |x− y| ∃N ∈ N s.t.length (JN ) < ε

SetOx open coverK HenceK ∩ JN ⊆ Vε(x) ⊆ Oi contradiction.
∃x1, . . . , x2 ∈ K s.t.K ⊆ Ox1

∪ . . . ∪Oxn
PickN ∈ N s.t. |yN − y| < min{ 12 |xi − y| : i = 1, . . . , n}

Hence yn 6∈ Ox1 ∪ . . . ∪Oxn contradiction

Heine Borel theorem: LetK ⊆ R then following statements equivalent:
(1)K is compact
(2)K is closed and bounded.
(3) Any open coverK has a finite subcover.

Example:

1:
Possible open covers forA = (0, 1):
O1 = R
O1 = (0, 1)
O1 = (0, 12 ) andO2 = ( 1

3 , 5)
O2 = (− n

10 ,
n
10 ) ,n ∈ N. Has a finite subcover! Oa = ( 1

a , 2) ,a ≥ 1 does not have a finite subcover!
2:
Every finite set is compact:
LetK = {a1, a2, . . . , ap}
LetOi where i ∈ I be an open cover forK
There exists i1, . . . ip ∈ I s.t. ak ∈ Oik
ThereforeK ⊂ Oi1 ∪ . . . ∪Oip
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Lecture 9

Limit point: c is a limit point ofA where f : A→ Rwhen:

lim
x→c

f(x) = Lwhen: ∀ε > 0∃δ > 0 s.t.

{
0 < |x− c| < δ

x ∈ A

}
⇒ |f(x)− L| < ε

Note: f need not be defined at c
Note: type definition: ε, δ definition.

Sequential characterization:
Let f : A→ R and c a limit point ofA the following statements are equivalent:
(1) lim

x→c
f(x) = L

(2) lim f(xn) = L for all (xn) ⊂ A withxn 6= c and limxn = c
(3) lim

x→c
f(x) does not exist if there exist (xn), (yn) ⊆ A s.t.

(a)xn 6= c and yn 6= c
(b) limxn = lim yn = c
(c) lim f(xn) 6= lim f(yn)

Example:

1:
lim
x→2

x2+x−6
5x−10 = 1

Let ε > 0 be arbitrary and set δ = 5ε
If 0 < |x− 2| < δ ,then:∣∣∣x2+x−6

5x−10 − 1
∣∣∣ =

∣∣∣ (x+3)(x−2)
5(x−2) − 1

∣∣∣ =
∣∣x+3

5 − 1
∣∣ = |x−2|

5 < 5
δ = ε

2:
lim
x→c

√
x =
√
c for c > 0

|
√
x−
√
c| =

∣∣∣ x−c√
x+
√
c

∣∣∣ = |x−c|√
x+
√
c

With ε > 0 and δ =
√
c · ε the definition is satisfied.

So,|
√
x−
√
c| ≤ |x−c|√

c
3:
lim
x→0

f(x) does not exist for:

f(x) =

{
1 ifx ∈ Q
0 ifx /∈ Q

and takexn = 1
n and yn =

√
2
n then it satify:

limxn = lim yn = 0
lim f(xn) = 1 and lim f(yn) = 0 so the limit does not exist.
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Algebraic porperties:

Let f, g : A→ R,c a limit point ofA and lim
x→c

f(x) = L and lim
x→c

g(x) = M Then:

Algebraic property condition Algebraic property
(1) lim

x→c
kf(x) = kL k ∈ R lim

x→c
f(x) + g(x) = L+M

lim
x→c

f(x)
g(x) = L

M M 6= 0 lim
x→c

f(x)g(x) = LM

Continous function f : A→ R if ∀ε > 0 there∃δ > 0 s.t.

{
|x− c| < δ

x ∈ A

}
⇒ |f(x)− f(c)| < ε

Notes:
(1) f(c) needs to be defined
(2) c need not to be a limit point ofA
(3) δ may depend on ε&c
(4) type of definition= ε, δ definition.

Example:

1:
If c ∈ A is isolated then f : A→ R is continuous at c
Let ε > 0 Take δ > 0 s.t.Vδ(c) ∩A = {c}, then:
|x− c| < δ andx ∈ A⇒ x ∈ Vδ(c) ∩A
⇒ x = c⇒ f(x) = f(c)⇒ |f(x)− f(c)| = 0 ≤ ε
2:
f(x) = x2 is continuous at every c ∈ R
For |x− c| < 1 we have |x| < |c|+ 1 and
|f(x)− f(c)| =

∣∣x2 − c2∣∣ = |x+ c||x− c| ≤ (|x|+ |c|)|x− c| < (2|c|+ 1)|x− c|
For a given ε > 0 take δ = min{1, ε

2|c|+1}
3:
f(x) = |x| is continuous at every c ∈ R
For alx, c ∈ R we have:
|f(x)− f(c)| = ||x| − |c|| ≤ |x− c|
For a given ε > 0 take δ = ε
δ independent of c here because constant slope (-1 or 1).

sequential characterization:

f : A→ R and c ∈ A Then following statements equivalent.
(1) f continuous @c
(2) (xn) ⊆ A and limxn = c⇒ lim f(xn) = f(c)
(3) c limit point ofA then 1& 2 also equivalent with lim

x→c
f(x) = f(c)

f : A→ R and c ∈ A limit point. f not continuous @x = c if there exists (xn) ⊆ A s.t.
xn 6= c limxn = c lim f(xn) 6= f(c)
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Example:

there exists no number a ∈ R that makes:

f(x) =

{
sin 1

x
ifx 6= 0

a ifx = 0
continuous atx = 0

(-) if a 6= 0 , then withxn = 1
nπ we have: limxn = 0 but lim f(xn) = 0 6= a = f(0)

(-) if a = 0 then withxn = 1
2nπ+π

2
we have limxn = 0 but lim f(xn) = 1 6= a = f(0)

Dirichlet’s function:

Dirichlet’s function Modified dirichlet’s function.

g(x) =

{
1 ifx ∈ Q
0 ifx 6∈ Q

h(x) =

{
x ifx ∈ Q
0 ifx 6∈ Q

Nowhere continuous Only continuous atx = 0
Proof Proof

Takexn = c+
√
2
n soxn 6∈ Q Continuity follows from |h(x)| ≤ |x|by:

Then limxn = cbut lim g(xn) = 0 6= g(c) 1.limxn = 0⇒ limh(xn) = 0
Proof of discontinuity at c ∈ R \Q or ε, δ definition

Takexn ∈ Q s.t. |xn − c| < 1
n ,∀n ∈ N Proof of discountinuity at c 6= a as for dirichlet’s function.

Then limxn = c
But lim g(xn) = 1 6= g(c)

Thomae’s function:

t(x) =


1 ifx = 0
1
n
ifx = m/n ∈ Q \ {0}in lowest terms withn > 0

0 ifx /∈ Q
Discontinuous at each c ∈ Q but continuous at each c ∈ R \Q
Proof:
Discontinuity at c ∈ Q
Takexn = c+

√
2
n Then limxn = c but lim t(xn) = 0 6= t(c)

Proof of continuity at c ∈ R \Q
Let ε > 0 and pick k ∈ Nwith 1

k < ε
(c− 1, c+ 1) contains finitely many r ∈ Q with denominator≤ k
Pick 0 < δ < 1 such that (c− δ, c+ δ) contains no rationals with denominator≤ k then:
|x− c| < δ ⇒ |t(x)− t(c)| = |t(x)| = t(x) < 1

k < ε
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Lecture 10

Theorem: f : A→ R continuous andK ⊆ A compact⇒ f(K) compact.
Proof:
Let (yn) ⊆ f(K) arbitraru.
∃(xn) ⊆ K s.t. yn = f(xn) for alln
K compact⇒ some subsequencexnk → x ∈ K
f continuous⇒ ynk = f(xnk)→ f(x) ∈ F (K)
WARNING: false for pre-images: f−1(K) = {x ∈ A : f(x) ∈ K}
Counter example: f(x) = 0 forallx ∈ R, soK any compact set containing 0, so f−1(K) = R is not
compact.
Theorem maxima and minima:
Let K ⊂ R be compact and f : K → R continuous then f attains a maximum and a minimum
onK
Proof:

Maximum Minimum
Exercise 3.3.1⇒ s = sup f(K) exists and s ∈ f(K) Exercise 3.3.1⇒ i = inf f(K) exists and i ∈ f(K)

s = f(c) for some c ∈ K i = f(c) for some c ∈ K
s is an upper bound for f(K)⇒ f(x) ≤ s forallx ∈ K i is a lower bound for f(K)⇒ f(x) ≥ i for allx ∈ K

Warning: without compactness previous theorem is false.
Counterexample: f(x) = x no minimum on (0, 1] no maximum on [0, 1) neither a maximum nor a
minimum onR
Uniform continuous f : A→ R onA if∀ε > 0 ,∃δ > 0 s.t. ,∀x, y ∈ A:
|x− y| < δ ⇒ |f(x)− f(y)| < ε
Uniform means that δ does not depend onx or y (but δ may still depend on ε)
NOT uniform continuous:∃ε0 > 0 s.t.∀δ > 0 ,∃x, y ∈ A for which ,|x− y| < δ,but |f(x)− f(y)| ≥
ε0
Theorem: f : K → R continuous andK is compact, then f uniformly continous onK
Proof:
Let ε > 0 be arbitrary.
For all c ∈ K there exists δc > 0 such that |x− c| < 2δc ⇒ |f(x)− f(c)| < 1

2ε
Oc = (c− δc, c+ δc) with c ∈ K , form an open cover forK
K ⊂ Oc1 ∪ . . . ∪Ocn for some c1, . . . , cn ∈ K
Takex, y ∈ K with |x− y| < δ = min{δc1 , . . . , δcn}
|x− ci| < δci for some i = 1, . . . , n
|f(x)− f(ci)| < 1

2ε
|ci − y| ≤ |ci − x|+ |x− y| < δci + δ < 2δci
|f(ci)− f(y)| < 1

2ε
Apply triangle inequality with |f(x)− f(ci)| < 1

2ε and |f(ci)− f(y)| < 1
2ε

⇒ |f(x)− f(y)| < ε
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Examples:

1:
f(x) = ax+ b is uniformly continuous onR
Forx, y ∈ R we have:
|f(x)− f(y)| = |(x+ b)− (ay + b)| = |a||x− y|
Let ε > 0 and pick δ = ε

|a| then for allx, y ∈ R we have:

|x− y| < δ ⇒ |f(x)− f(y)| < |a|δ = ε
When a = 0 we can choose any δ
2:
f(x) = x2 is uniformly continuous on [a, b]
Forx, y ∈ [a, b] we have:
|f(x)− f(y)| = |x+ y||x− y| ≤ (|x|+ |y|)|x− y| ≤ 2M |x− y| whereM := max{|a|, |b|}
For ε > 0 take δ = ε

2M then for allx, y ∈ [a, b] we have:
|x− y| < δ ⇒ |f(x)− f(y)| < 2Mδ = ε
3:
f(x) = x2 is not uniformly continuous onR
xn = n+ 1

n and yn = n
|xn − yn| = 1

n → 0
|f(xn) = f(yn)| = 2 + 1

n2 > 2 and∀n ∈ N
4:
f(x) = 1

x is uniform continuous on [a,∞) for all a > 0
Forx, y ∈ [a,∞) we have:∣∣∣ 1x − 1

y

∣∣∣ =
∣∣∣y−xxy ∣∣∣ = |x−y|

xy ≤
|x−y|
a2

For ε > 0 take δ = a2ε then for allx, y ∈ [a,∞) we have |x− y| < δ ⇒ |f(x)− f(y)| < δ
a2 = ε

5:
f(x) = 1

x is not unif. cont. on (0,∞)
xn = 1

n+1 and yn = 1
n

|xn − yn| → 0
|f(xn)− f(yn)| = 1 ,∀n ∈ N
6:√
x is uniformly continuous on [1,∞)

Forx, y ≥ 1 we have:∣∣√x−√y∣∣ =
∣∣∣ x−y√

x+
√
y

∣∣∣ = |x−y|√
x+
√
y
≤ |x−y|2

For given ε > 0 take δ = 2ε to satisfy the definition.
7:
[0, 1] is compact and f(x) =

√
x continuous on [0, 1] gives the conclusion that f is continuous

on [0, 1]
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Intermediate value theorem:

f : [a, b]→ R continuous and f(a) < L < f(b) or f(a) > L > f(b) then f(c) = L for some c ∈ (a, b)
Note:Without loss of generality we can assume
(-)L = 0 otherwise replace f(x) by f(x)− L
(-) f(a) < 0 < f(b), otherwise replace f(x) by−f(x)
Proof:
∃In = [an, bn] s.t. f(an) < 0 ≤ f(bn) so I0 ⊇ I1 ⊇ I2 ⊇ . . . so Length(In) = b−a

2n

So∃c ∈ [a, b] so∃c ∈ In = [an, bn] ,∀n ∈ N
Note that: |an − c| ≤ Length(In)→ 0 |bn − c| ≤ Length(In)→ 0
So c = lim an = lim bn. Continuity of f implies:
f(c) = lim f(an) = lim f(bn)
We know f(an) < 0,and∀n ∈ N so f(c) ≤ 0
We know f(bn) ≥ 0,and∀n ∈ N so f(c) ≥ 0
Combine f(c) ≤ 0 and f(c) ≥ 0 we receive f(c) = 0

Example:

1:
p(x) = x5 − 2x3 − 2 has a zero on (0, 2)
p is continuous on [0, 2]
p(0) = −2 < 0 and p(2) = 14 > 0
IVT⇒ p(c) = 0 for some c ∈ (0, 2)
2:
if f : [a, b]→ R is continuous and f([a, b]) ⊂ [a, b], then f(c) = c for some c ∈ [a, b]
Assume f(a) 6= a and f(b) 6= b (Otherwise nothing to prove)
f([a, b]) ⊂ [a, b]⇒ f(a) > a, f(b) < b
g(x) = f(x)− x is continuous and g(b) < 0 < g(a)
IVT⇒ g(c) = 0 for some c ∈ (a, b)
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Lecture 11

Derivative

Derivative: limit of a difference quotient, denoted by f ′(x)

Differentiable f : I → R (where I ⊆ R, interval) @c ∈ I if f ′(c) := lim
x→c

f(x)−f(c)
x−c exists.

Theorem: f : I → R differentiable at c ∈ I ⇒ f continuous at c
Proof:
lim
x→c

[f(x)− f(c)] = lim
x→c

f(x)−f(c)
x−c · (x− c) = lim

x→c
f(x)−f(c)

x−c · lim
x→c

[x− c] = f ′(c) · 0 = 0

Example:

1:

f(x) =

{
1 ifx > 0

0 ifx ≤ 0
is not differentiable at c = 0. Reason: f is not continuous at c = 0

2:
f(x) = |x| continuous but not differentiable at c = 0

lim
x→0

f(x)−f(0)
x−0 = lim

x→0

|x|
x does not exist.

3:

f is differentiable at every c 6= 0 and f ′(c) =

{
1 if c > 0

−1 if c < 0
where f(x) = |x|

4:
f(x) = x

1+|x| ⇒ f ′(0) = 1

We can not use the quotient rule, because derivative of |x|wherex = 0, does not exist.∣∣∣ f(x)−f(0)x−0 − 1
∣∣∣ =

∣∣∣ 1
1+|x| − 1

∣∣∣ =
∣∣∣ |x|1+|x| − 1

∣∣∣ = |x|
1+|x| ≤ |x|

f ′(0) = lim
x→0

f(x)−f(0)
x−0 = 1 , by ε, δ-argument.

Remark: for c 6= 0 we can compute f ′(c) using calculus rules.
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Theorems:

Name Theorem Proof
Interior Assume: Maximum: May be false for

Extremum
f(a, b)→ R differentiable
f attains a maximum

or minimum at c ∈ (a, b)
f(c) ≥ f(x) for allx ∈ (a, b) closed intervals:

theorem Then f ′(c) = 0 (xn)&(yn) ∈ (a, b) s.t. f(x) = x on [0, 1]
xn < c < yn ,∀n ∈ N and min@x = 0

limxn = lim yn = c ,but f ′(0) = 1

f ′(c) = f(xn)−f(c)
xn−c ≥ 0 max@x = 1

f ′(c) = f(yn)−f(c)
y−c ≤ 0 but f ′(1) = 1

f ′(c) = 0 by order limit theorem
Darboux’s If f : [a, b]→ R differentiable f ′(a) < 0 < f ′(b) do not assume
Theorem f ′(a) < L < f ′(b) (or replace f(x) by±(f(x)− Lx)) f ′ continuous

or f ′(a) > L > f ′(b) ∃s ∈ (a, b) s.t f(s) < f(a)
there exists c ∈ (a, b) Otherwise f(x) ≥ f(a)∀x ∈ (a, b)

s.t. f ′(c) = L so f ′(a) = lim
x→a

f(x)−f(a)
x−a ≥ 0

contradiction
can do the same for f(t) < f(b)

[a, b] compact, f continuous
f mimimum on [a, b]

f(s) < f(a)&f(t) < f(b)⇒
f minimum in (a, b)

IET, f ′(c) = 0 for some c ∈ (a, b)
Rolle’s Assume that f continous and [a, b] compact

theorem
f : [a, b]→ R

and differentiable on (a, b)
f(a) = f(b)

so f attains max/min values.

∃c ∈ (a, b) s.t. f ′(c) = 0 f(a) = f(b) both max and min:
f constant⇒ f ′(x) = 0 for allx

take any c ∈ (a, b)
otherwise by IET

Mean if [a, b]→ R continuous h(x) = f(x)− k(x)

Value and f differentiable on (a, b) k(x) = f(b)−f(a)
b−a (x− a) + f(a)

Theorem ∃c ∈ (a, b) s.t. h(x) con. on [a, b] and diff. on (a, b)

f ′(c) = f(b)−f(a)
b−a h(a) = h(b) = 0

h′(c) = 0⇒ f ′(c) = k′(c)

f ′(c) = f(b)−f(a)
b−a

Example:

f(x) =

{
1 ifx ∈ Q
0 ifx /∈ Q

is NOT derivative.

Assume there existsF : R→ R s.t.F ′(x) = f(x)
Darboux⇒ f attains all values in (0, 1)
Contradiction!!
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Application to uniform continuity

Example:

f(x) = arctan(x) is uniformly continuous onR
MVT⇒ ∀x, y ∈ R ,∃c ∈ (x, y) s.t.,arctan(x)− arctan(y) = arctan′(c)(x− y)
arctan(x)− arctan(y) = 1

1+c2 (x− y)
|arctan(x)− arctan(y)| ≤ |x− y|
For ε > 0 take δ = ε to satisfy the definition of uniformly continuity.

Pathologies:

Formula Graph
h : R→ R

h(x) = |x| forx ∈ [−1, 1]
h(x+ 2) = h(x) for allx ∈ R

hn(x) = 1
2nh(2nx)

gm(x) =
m∑
n=0

hn(x)

m→∞

g(x) =
∞∑
n=0

hn(x)

Everywhere continuous, nowhere differentiable.
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Lecture 12

Sequence of functions: fn : A→ R
fnPointwise convergence: to f : A→ R for all fixedx ∈ Awhen lim fn(x) = f(x)
So for fixedx ∈ A:∀ε > 0∃Nε,x ∈ N s.t.n ≥ Nε,x ⇒ |fn(x)− f(x)| < ε
fnUniform convergence: to f : A→ R if:
∀ε > 0,there∃Nε ∈ N s.t.n ≥ Nε ⇒ |fn(x)− f(x)| < ε∀x ∈ A
Note: independent ofx ∈ A

Familiar examples:

Name Picture proof
Classical fn(x) = xn

Example f(x) = lim fn(x) =

{
0ifx < 1

1 ifx = 1
onA = [0, 1]

ε > 0 arbitrary.
x = 0 ∨ x = 1,takeNε,x = 1

n ≥ Nε,x ⇒ |fn(x)− f(x)| = 0 < ε

0 < x < 1 Take Nε,x >
log ε
log x

n ≥ Nε,x ⇒ |fn(x)− f(x)| = |xn − 0| = xn < ε
Observe howN depends on both ε andx!

Triangle
sequence

fn(x) =


2nx if 0 ≤ x ≤ 1

2n

2− 2nx if 1
2n
≤ x ≤ 1

n

0 if 1
n
≤ x ≤ 1

Then f(x) = lim fn(x) = 0 for allx ∈ [0, 1]
0 < x ≤ 1: takeNε,x >

1
x

n ≥ Nε,x ⇒ 1
n < x⇒ |fN (x)− f(x)| = |0− 0| = 0 < ε
Observe howN depends onx!

x = 0: takeNε,x = 1
n ≥ Nε,x ⇒ |fn(x)− f(x)| = |0− 0| = 0 < ε

The classic example and the triangle inequality does not converge uniform, because we can find a
value of ε for which the statement does not hold, but it must hold for all ε > 0 to converge uniform.
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A useful characterization:

Theorem: consider fn : A→ R then: fn → f uniformly⇔ lim(sup
x∈A
|fn(x)− f(x)|) = 0

Proof:
⇒ ⇐

for ε > 0 there∃Nε ∈ N s.t. For ε > 0 there∃Nε ∈ N s.t.
n ≥ Nε ⇒ |fn(x)− f(x)| < ε ,∀x ∈ A n ≥ Nε ⇒ sup

x∈A
|fn(x)− f(x)| < ε

So sup
x∈A
|fn(x)− f(x)| ≤ ε ⇒ |fn(x)− f(x)| < ε ,∀x ∈ A

Example:

1: 2:
OnA = [0, 1] the sequence fn(x) = xn The triangle sequence does not

Does not converge uniformly to f(x) =

{
0 ifx < 1

1 ifx = 1
converge uniformly to zero

Reason:for alln ∈ N we have since sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x) = 1

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

xn = 1

3: 4:

fn(x) = (1− x)xn → 0 fn(x) = x2

1+nx2 → 0

uniformly on [0, 1] uniformly onA = R
Calculus method: fn(x) maximum@xn = n

n+1

sup
x∈[0,1]

|fn(x)− 0| = fn(xn)

= 1
n+1 ( n

n+1 )n < 1
n+1 → 0

Preservation of continuity:

Assume fn : A→ R satisfies:
(1) fn → f uniformly onA (2) fn is continuous at c ∈ A for alln ∈ N

Then f is continuous at c
Moral: uniform convergence preserves continuity!
Proof:
For,ε > 0 there exist:N ∈ N s.t. |fN (x)− f(x)| < 1

3ε , for allx ∈ A
δ > 0 s.t. |x− c| < δ ⇒ |fN (x)− fN (c)| < 1

3ε
If |x− c| < δ then:
|f(x)− f(c)| = |f(x)− fN (x) + fN (x)− fN (c) + fN (c) = f(c)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (c)|+ |fN (c)− f(c)| < 1

3ε+ 1
3ε+ 1

3ε = ε

Example:

The sequence fn(x) = xn does NOT uniformly converge to:

f(x) =

{
0 ifx < 1

1 ofx = 1
on the setA = [0, 1] because each fn continuous atx = −1 but lim f not.
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Lecture 13

Cauchy criterion: Following statements equivalent:
The following statements are equivalent:
(1) fn converges uniformly onA
(2) for all ε > 0 there existsNε ∈ N s.t.n,m ≥ N ⇒ |fn(x)− fm(x)| < ε,∀x ∈ A
Proof:

1→ 2 2→ 1
For all ε > 0,∃Nε ∈ N s.t. for all ε > 0 there existsNε ∈ N s.t.:

n ≥ Nε ⇒ |fn(x)− f(x)| < ε
2 ∀x ∈ A n,m ≥ Nε ⇒ |fn(x)− fm(x)| < ε,∀x ∈ A

n,m ≥ Nε ⇒ |fn(x)− fm(x)| → f(x) := lim fn(x) ,exists∀x ∈ A
= |fn(x)− f(x) + f(x)− fm(x)| n,m ≥ Nε ⇒ fn(x)− ε < fm(x) < fn(x) + ε,∀x ∈ A
≤ |fn(x)− f(x)|+ |f(x)− fm(x)|

< ε
2 + ε

2 = ε, ∀x ∈ A n ≥ Nε ⇒ fn(x)− ε ≤ f(x) ≤ fn(x) + ε ,∀x ∈ A
So (2) Wherem→∞

n ≥ Nε ⇒ |fn(x)− f(x)| < ε,∀x ∈ A
So (1)

uniform convergence preserve differentiability?

Counter example: fn(x) =
√
x2 + 1

n → |x| uniformly on [−1, 1]

Every fn is differentiable atx = 0, but the limit is NOT.
Lemma: assume that:
(1) fn : [a, b]→ R differentiable for alln
(2) f ′n converges uniformly on [a, b] (note the prime)
(3) fn(x0) converges for somex0 ∈ [a, b]
Then fn converges uniformly on [a, b]
Proof:
for each ε > 0 there existsN1, N2 ∈ N s.t.:
n,m ≥ N1 ⇒ |f ′n(x)− f ′m(x)| < ε

2(b−a) ,∀x ∈ [a, b] andn,m ≥ N2 ⇒ |fn(x0)− fm(x0)| < ε
2

Claim:n,m ≥ max{N1, N2} ⇒ |fn(x)− fm(x)| < ε ,∀x ∈ [a, b]
Proof of claim:
Apply MVT to g = fn − fm
g(x) = g(x)− g(x0) + g(x0)
g(x) = g′(c)(x− x0) + g(x0) c betweenx andx0
Triangle inequality:
|g(x)| ≤ |g′(c)| · |x− x0|+ |g(x0)| = |g′(c)| · (b− a) + |g(x0)|
|fn(x)− fm(x)| ≤ |f ′n(c)− f ′m(c)| · (b− a) + |fn(x0)− fm(x0)|
|fn(x)− fm(x)| ≤ ε

2(b−a) · (b− a) + ε
2 ≤

ε
2 + ε

2 = ε
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Theorem: If:
1. fn : [a, b]→ R differentiable for alln
2. f ′n → g uniformly on [a, b]
3. fn(x0) converges for somex0 ∈ [a, b]
Then there exists a differentiable f : [a, b]→ R s.t. fn → f uniformly and f ′ = g
Moral: (lim fn)′ = lim(f ′n)

Proof:

Theorem at the top of this page:

Lemma gives fn → f uniformly Let c ∈ [a, b] and ε > 0 be arbitary
on [a, b] for some f To prove: there exists δ > 0 s.t.

0 < |x− c| < δ ⇒
∣∣∣ f(x)−f(c)x−c − g(c)

∣∣∣ < ε

Part 1a Part 1b

Proof part 1b:

By using the triangle inequality we find the following 3 parts:
∃N ∈ N and δ > 0 s.t.:

Part statement Proof

2a
∣∣∣ f(x)−f(c)x−c − fn(x)−fn(c)

x−c

∣∣∣ < ε
3

∣∣∣ (fm(x)−fn(x))−(fm(c)−fn(c))
x−c

∣∣∣ = |f ′m(α)− f ′n(α)|
∃N1 ∈ N s.t.

n,m ≥ N1 ⇒ |f ′m(x)− f ′n(x)| < ε
3 ∀x ∈ [a, b]

Order limit theorem withm→∞
n ≥ N1 ⇒

∣∣∣ f(x)−f(c)x−c − fn(x)−fn(c)
x−c

∣∣∣ ≤ ε
3

2b |f ′n(c)− g(c)| < ε
3 n ≥ N2 ⇒ |f ′n(c)− g(c)| < ε

3

2c
∣∣∣ fn(x)−fn(c)x−c − f ′n(c)

∣∣∣ < ε
3 for 0 < |x− c| < δ fixn = max{N1, N2} and δ > 0 s.t.

0 < |x− c| < δ ⇒
∣∣∣ fn(x)−fn(c)x−c − f ′n(c)

∣∣∣ < ε
3

Because we proved statement 2a,2b and 2c, we can say that statement 1b is true, we know that 1a
is true (because a direct conclusion from a lemma), and therefore the theorem is true.
Series of functions:Let fn : A→ R and sn = f1 + . . .+ fn then:

(-)
∞∑
n=1

fn → f poinstwise means sn → f pointwise.

(-)
∞∑
n=1

fn → f uniformly means sn → f uniformly.

Cauchy criterion: the following statements are equivalent:

(1)
∞∑
n=1

fn converges uniformly onA

(2) for all ε > 0 there existsN ∈ N s.t.
n > m ≥ N ⇒ |fm+1(x) + . . .+ fn(x)| < ε for allx ∈ A
Proof:
Follows from: |sm(x)− sn(x)| = |fm+1(x) + . . .+ fn(x)|
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Weierstrass test: assume that:
(1) |fn(x)| ≤ Cn for allx ∈ A
(2)

∞∑
n=1

Cn converges.

Then
∞∑
n=1

fn converges uniformly onA

Proof: for allx ∈ A we have:
|sn(x)− sm(x)| = |fm+1(x) + . . .+ fn(x)| ≤ Cm+1 + . . .+ Cn

Cauchy criterion for
∞∑
n=1

Cn ⇒ Cauchy criterion for sn

Preservation of continuity: assume:

(1)
∞∑
n=1

fn → f uniformly onA

(2) fN is continuous onA for alln
Then f is continuous onA
Proof:
sn = f1 + . . .+ fn is continuous onA for alln ∈ N
sn → f uniformly→ f is continuous onA
Preservation of differentiability:Assume:
(1) fn : [a, b]→ R is differentiable for alln

(2)
∞∑
n=1

f ′n → g uniformly on [a, b]

(3)
∞∑
n=1

fn(x0) converges for somex0 ∈ [a, b]

Then there exists a differentiable f : [a, b]→ R s.t.
∞∑
n=1

fn → f uniformly and f ′ =
∞∑
n=1

f ′n

Example:

1:

Same graphs as before:
Claim: fn(x); = 1

2nh(2nx)⇒ |fn(x)| ≤ 1
2n for allx ∈ R

∞∑
n=0

1
2n converges.

Weierstrass test⇒
∞∑
n=0

fn converges uniformly onR

fn continuous onR for alln ∈ N⇒ f continuous onR
2: f(x) =

∞∑
n=0

sin(2nx)
3n is differentiable on every [−c, c]

(-) fn(x) = sin(2nx)/3n is differentiable forn ∈ N
(-) |f ′n(x)| ≤ ( 2

3 )n ,∀x ∈ [−c, c]

Weierstrass⇒
∞∑
n=1

f ′n(x) converges uniformly on [−c, c]

(-)
∞∑
n=1

fn(x) converges atx = 0 Apply term-wise differentiability Theorem.
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Lecture 14

Power series general form:
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

Pointwise convergence thm:
∞∑
n=0

anx
n converges at c 6= 0⇒

∞∑
n=0
|anxn| converges for |x| < |c|

Proof:
∞∑
n=0

anc
n converges⇒ lim anc

n = 0

⇒ (anc
n) is bounded.

⇒ ∃M > 0 s.t. |ancn| ≤M,∀n ∈ N
|anxn| =

∣∣an(c · xc )n
∣∣ = |ancn| ·

∣∣x
c

∣∣n ≤M · ∣∣xc ∣∣n ,∀n ∈ N
Note |x| < |c| ⇒

∣∣x
c

∣∣ < 1
Therefore we see that |anxn| ≤M
So Apply comparison test:
∞∑
n=0

M
∣∣x
c

∣∣n converges⇒
∞∑
n=0
|anxn| converges.

Radius of convergence:R whenR ≥ 0
(-) |x| < R⇒PS converges atx
(-) |x| > R⇒PS diverges atx Computing the radius.
(-)Root test:L = lim n

√
|an| exists thenR = 1

L

(-)Ratio test:L = lim
∣∣∣an+1

an

∣∣∣ exists, thenR = 1
L

(-)L = 0? thenR =∞
Proof:
lim n

√
|anxn| = L|x| ,∀x ∈ R fixed.

For all ε > 0 there existsN ∈ N s.t.n ≥ N ⇒
∣∣∣ n√|anxn| − L|x|∣∣∣ < ε

⇒ L|x| − ε < n
√
|anxn| < L|x|+ ε

⇒ (L|x| − ε)n < |anxn| < (L|x|+ ε)n

x < 1
L x > 1

L

Pick ε < 1− L|x| pick ε < L|x| − 1

L|x|+ ε < 1⇒
∞∑
n=0

(L|x|+ ε)n converges. L|x| − ε > 1⇒ (L|x| − ε)n unbounded.

⇒
∞∑
n=0
|anxn| converges. ⇒ |anxn| unbounded.

⇒
∞∑
n=0

anx
n converges. ⇒

∞∑
n=0

anx
n diverges

Example:

Root test: Ratio test:
∞∑
n=0

xn

5n2 Radius of convergence:
∞∑
n=1

xn

n2

an = 1
5n2 ⇒ n

√
|an| = 1

5n an = 1
n2 ⇒ an+1

an
= n2

(n+1)2

⇒ L = 0 L = 1
⇒ R =∞ R = 1
⇒ x < R converges for value in closed interval [−1, 1]

⇒PS converges.
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Theorems:

Beware of the boundary points:
Example Radius atx = −R atx = R
∞∑
n=1

xn R = 1 divergent divergent.

∞∑
n=1

1
nx

n R = 1 convergent divergent

∞∑
n=1

(−1)n
n xn R = 1 divergent convergent.

∞∑
n=1

1
n2x

n R = 1 convergent convergent

Theorem uniform convergence:
∞∑
n=0
|ancn| convergent⇒

∞∑
n=0

anx
n uniformly convergent on [−|c|, |c|]

Proof:
For |x| ≤ |c| we have: |anxn| = |an| · |x|n ≤ |an| · |c|n = |ancn| =: Mn

Apply Weierstrass’ test:
∞∑
n=0

Mn convergent⇒
∞∑
n=0

anx
n uniformly convergent on [−|c|, |c|]

Continuity of the limit: Corollary:
∞∑
n=0

anx
n continuous function on (−R,R) Proof:Takex0 ∈

(−R,R) and |x0| < c < d < R then:
PS convergent at d⇒PS absolutely convergent at c
⇒PS uniformly convergent on [−c, c]⇒PS continuous on [−c, c]
Each anx

n is continuous!
⇒PS continuous atx0 ⇒PS continuous on (−R,R)
Continuity of the limit (2):
∞∑
n=0
|anRn| convergent⇒

∞∑
n=0

anx
n uniformly convergent on [−R,R]

In particular, the PS is continuous on [−R,R]
What if convergence is conditional atX = R orx = −R
Lemma: if sn = u1 + . . .+ un then:

n∑
k=1

ukvk = snvn+1 +
n∑
k=1

sk(vk − vk+1)

Proof:
Set s0 = 0 then:ukvk = (sk − sk−1)vk = sk(vk − vk+1) + skvk+1 − sk−1vk ,∀k = 1, . . . , n

These last two terms are called the telescoping terms.
n∑
k=1

ukvk = snvn+1 +
n∑
k=1

sk(vk−vk+1) Abel’s

Lemma: Assume that (un) and (vn) satisfy:
(1) |u1 + . . .+ yn| ≤ C ,∀n ∈ N (2) 0 ≤ vn+1 ≤ vn ,∀n ∈ N

Then

∣∣∣∣ n∑
k=1

ukvk

∣∣∣∣ ≤ Cv1 ,∀n ∈ N

Proof:

sn = u1 + . . .+ u1 so

∣∣∣∣ n∑
k=1

ukvk

∣∣∣∣ =

∣∣∣∣snvn+1 +
n∑
k=1

sk(vk − vk+1)

∣∣∣∣∣∣∣∣ n∑
k=1

ukvk

∣∣∣∣ ≤ |sn|vn+1 +
n∑
k=1

|sk|(vk − vk+1)∣∣∣∣ n∑
k=1

ukvk

∣∣∣∣ ≤ C(vn+1 +
n∑
k=1

(vk − vk+1)) = Cv1
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Abel’s theorem:
(1) PS converges atx = R⇒ PS converges uniformly on [0, R]
(2) PS converges atx = −R⇒PS converges uniformly on [−R, 0]
Proof: only part 1:

for all ε > 0 there existsN ∈ N s.t.n > m ≥ N ⇒

∣∣∣∣∣ n∑
k=m+1

akR
k

∣∣∣∣∣ < ε

take anyx ∈ [0, R] and set: vk = ( xR )k, then:uk =

{
akR

k ifk ≥ m+ 1

0 otherwise

Abel’s lemma→Cauchy criterion:

∣∣∣∣∣ n∑
k=m+1

akx
k

∣∣∣∣∣ =

∣∣∣∣ n∑
k=1

ykvk

∣∣∣∣ < ε · xR ≤ ε∀x ∈ [0, R]

term 1b 2020-2021 Page 40



Analysis, University of Groningen H.M. Goossens

Differentiation theorem:
∞∑
n=0

anx
n convergent on (−R,R)⇒

∞∑
n=0

nanx
n−1 convergent on (−R,R)

Proof:
|c| < 1 then there existsM > 0 s.t.

∣∣nc−1∣∣ ≤M ,∀n ∈ N
Let |x| < t < R ,then:

∣∣nanxn−1∣∣ = 1
t (n
∣∣x
t

∣∣n−1)|antn| ≤ M
t |ant

n|
Apply comparison test.
Differentiation term by term:

For any PS with radiusR we have: (
∞∑
n=0

anx
n)′ =

∞∑
n=0

nanx
n−1 ,∀x ∈ (−R,R)

Proof:
let 0 ≤ c < R then:
∞∑
n=0

nanx
n−1 converges uniformly on [−c, c] so

∞∑
n=0

anx
n converges atx = 0

Now apply Term-wise differentiability Theorem.

Examples:

1:
for allx ∈ (−1, 1) we have:
∞∑
n=0

xn = 1
1−x

∞∑
n=0

nxn−1 = 1
(1−x)2

Takingx = 1
4 gives:

∞∑
n=1

n
4n = 1

4

∞∑
n=0

n( 1
4 )n−1 = 1

4 ·
1

(1− 1
4 )

2 = 4
9

2:
For allx ∈ (−1, 1) we have:
∞∑
n=1

(−1)n+1

n xn → f(x)

∞∑
n=1

(−1)n+1xn−1 → f ′(x) = 1
1+x ⇒ f(x) = log |1 + x|+ C

Note that
(-)C = f(0) = 0 so f(x) = log |1 + x|
(-) Abel’s Theorem:⇒ PS in the original equation uniformly on [0, 1]
(=) Hence, PS in original equation is continupus atx = 1
∞∑
n=1

(−1)n+1

n xn = lim
x→1

∞∑
n=1

(−1)n+1

n xn = lim
x→1

f(x) = f(1) = log(2)

Conclusion: log(2) = 1− 1
2 + 1

3 −
1
4 + . . .
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Lecture 15

Taylor series of f aroundx = 0: given by:
∞∑
n=0

f(n)(0)
n! xn

Partial sum: sn(x) =
n∑
k=0

f(k)(0)
k! xl

Remainder:En(x) = f(x)− sn(x)
Lemma: t variable,xfixed. Assume that:
(-)x > 0 andh(t) isn+ 1 times differentiable on [0, x]
(-)h(x) = 0 andh(k)(0) = 0 for all k = 0, . . . , n
Thenh(n+1)(c) = 0 for some c ∈ (0, x)
Proof:
Repeated application Rolle’s theorem:
h(0) = h(x)⇒ h′(c1) = 0 for some c1 ∈ (0, x)
h′(0) = h′(c1)⇒ h′′(c2) = 0 for some c2 ∈ (0, c1)
...
h(n)(0) = h(n)(cn)⇒ h(n+1)(cn+1) = 0 for some cn+1 ∈ (0, cn)
Theorem:
forn ∈ N andx > 0, there exists c ∈ (0, x) s.t.:En(x) = f(n+1)(c)

(n+1)! x
n+1

Note: c depends on bothn andx!
Proof:
Fixx > 0 and consider:h(t) = f(t)− sn(t)− ( f(x)−sn(x)xn+1 )tn+1

note thath(x) = 0 andh(k)(0) = 0 for k = 0, . . . , n

Previous lemma gives c ∈ (0, x) s.t.: f (n+1)(c)− s(n+1)
n (c)− (n+ 1)!( f(x)−sn(x)xn+1 ) = 0

We can claim that s
(n+1)
n (c) = 0

f(x)− sn(x) = f(n+1)(c)
(n+1)! x

n+1

Taylor seriesof f aroundx = a:
∞∑
n=0

f(n)(a)
n! (x− a)n

Lagrange remainder: forx > a exists c ∈ (a, x) s.t.En(x) = f(x)− sn(x) = f(n+1)(c)
(n+1)! (x− a)n+1
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Examples:

Euler:
Taylor series for f(x) = ex

n f (n)(x) aN = f (n)(0)/n!
0 ex ex

1 ex ex

2 ex ex/2!
...

...
...

Forx 6= 0 there exists c ∈ (−|x|, |x|) s.t.:

ex =
n∑
k=0

1
k!x

k + ec

(n+1)!x
n+1

For any a > 0 we have:

supx∈[−a,a]

∣∣∣∣ex − n∑
k=0

1
k!x

k

∣∣∣∣ ≤ ea · an+1

(n+1)! → a asn→∞

The taylor series of f converges to f on [−a, a]!
Graph:

. . . sin(x)
n f (n)(x) an = f (n)(0)/n!
0 sin(x) 0
1 cos(x) 1
2 − sin(x) 0
3 − cos(x) − 1

3!
4 sin(x) 0
5 cos(x) 1

5!
...

...
...

Forx 6= 0 there exists c ∈ (−|x|, |x|) s.t.

|En(x)| =
∣∣∣ fn+1(c)
(n+1)! x

n+1
∣∣∣ ≤ |x|n+1

(n+1)!

Remainder converges to 0 uniformly on any interval [−a, a]:

sup
x∈[−a,a]

|En(x)| ≤ an+1

(n+1)! → 0 asn→∞

Conclusion:
sin(x) = x− 1

3!x
3 + 1

5!x
5 − 1

7!x
7 + . . . ,∀x ∈ R

When we make a graph of these taylor series, we see that the taylor series approxiomate the sinfunction
better for every higher value ofn
Natural logarithm:

f(x) = ln(1 + x)⇒ f (n)(x) = (−1)n+1(n−1)!
(1+x)n ∀n ∈ N

Forx > 0 exists c ∈ (0, x) s.t.: ln(1 + x) =
n∑
k=1

(−1)k+1

k xk + (−1)n
(n+1)(1+c)n+1x

n+1

arctan(x)
On [−1, 1] we have arctan(x) = x− 1

3x
3 + 1

5x
5 − 1

7x
7 + . . .

The convergence is uniform on [0, 1] but not on [−1, 0]
Forx = 1 we get π4 = 1− 1

3 + 1
5 −

1
7 + . . .

Counterexample:

f(x) =

{
e
− 1
x2 ifx 6= 0

0 ifx = 0
⇒ fn(0) = 0∀n ∈ N

The Taylor series of f does not converge to f
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Applications:

1∫
0

ex−1
x dx ≈ 1.3179 accoarding Wolfram Alpha.

Approximating square roots by an example:√
x centered atx = 1

√
x = 1 + 1

2 (x− 1)− 1
8 (x− 1)2 + E3(x)

This gives
√

5 ≈ 1 which is not true.
Centered atx = 2

√
x = 2 + 1

4 (x− 4)− 1
64 (x− 4)2 + E3(x)

Then
√

5 gives 2.234375, which is really close to the real value.

Approximating integrals:

Forx > 0 exists c ∈ (0, x) s.t.:

ex =
n∑
k=0

xk

k! + ec

(n+1)!x
n+1

ex−1
x =

n∑
k=1

xk−1

k! + ec

(n+1)!x
n

1∫
0

ex−1
x dx =

n∑
k=1

1
k!k +

1∫
0

ec

(n+1)!x
ndx

Upper bound Right part:Rn =
1∫
0

ec

(n+1)!x
ndx

1∫
0

ec

(n+1)!x
ndx <

1∫
0

3
(n+1)!x

ndx = 3
(n+1)!(n+1)

When we fill it in again we see that:
1∫
0

ex−1
x dx ≈

5∑
k=1

1
k!k = 1.31763 . . . Where (R5 < 0.001)
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Lecture 16

Partition: a partition of [a, b] is a set of the form:P = {a = x0 < x1 < x2 < . . . < xn = b}
Refinements:Q refinement ofP ifP ⊆ Qprovided thatP andQpartitions same interval.

Let f : [a, b]→ R be bounded andP be a partition of [a, b] then:
Lower sum of f w.r.tP :mk = inf{f(x) : x ∈ [xk−1, xk]}
Approximate area below graph of f L(f, P ) =

n∑
k=1

mk(xk − xk−1)

Upper sum of f w.r.tP :Mk = sup{f(x) : x ∈ [xk−1, xk]}
Approximate area above graph of f U(f, P ) =

n∑
k=1

Mk(xk − xk−1)

L(f, P ) ≤ U(f, P ) for any partitionP of [a, b]

Example:

1:
P1 = {0, 14 ,

1
2 , 1} partition of [0, 1]

P2 = {0, 1, 2}NOT partition of [0, 1]
P3 = {0, 12}NOT partition of [0, 1]
2:
P = {0, 12 , 1} partition [0, 1]
Q1 = {−, 14 ,

1
2 ,

9
10 , 1} refinesP

Q2 = {0, 12 , 1, 2} does not refineP because 2 6∈ [0, 1]
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Relation upper and lower sums:

Lemma: ifP ⊆ Q then:
(-)L(f, P ) ≤ L(f,Q) andU(f, P ) ≥ U(f,Q)
(-)U(f,Q)− L(f,Q) ≤ U(f, P )− L(f, P ) Proof:

Only proof upper sum, lower soom works the samae way.

RefineP by adding one point z ∈ [xk−1, xk]
mk = inf{f(x) : x ∈ [xk−1, xk]}
m′k = inf{f(x) : x ∈ [z, xk]}
m′′k = inf{f(x) : x ∈ [xk−1, z]}
We know thatA ⊂ B then inf A ≥ inf B
mk(xk − xk−1) = mk(xk − z) +mk(z − xk − 1) ≤ m′k(xk − z) +m′′k(z − xk−1)
Then proceed by induction
Lemma: for any two partitionsP1 andP2 we have:L(f, P1) ≤ U(f, P2)
Proof:Q = P1 ∪ P2 thenP1, P2 ⊂ Q, so:L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2)

Best possible approximate area and riemann integral:

Assume f : [a, b]→ R is bounded.
LetP denote the collections of all partitions fo [a, b]
U(f) = inf{U(f, P ) : P ∈ P} L(f) = sup{L(f, P ) : P ∈ P}

Lemma:L(f) ≤ U(f)
Proof:
L(f, P1) ≤ U(f, P2) for allP1, P2 ∈ P
L(f) ≤ U(f, P2) for allP2 ∈ P(take sup overP1)
L(f) ≤ U(f) (Take inf overP2)

Riemann integrable:bounded function f : [a, b]→ R andU(f) = L(f)

Notation:
b∫
a

f = U(f) = L(f) or
b∫
a

f(x)dx = U(f) = L(f)
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Integrability:

Theorem: The following statements are equivalent:
(1) f is integrable.
(2) or all ε > 0 there exists a partitionPε s.t.U(f, Pε)− L(f, Pε) < ε
Proof:
(2)⇒ (1)
U(f) ≤ U(f, Pε)

L(f) ≥ L(f, Pε)

}
⇒ U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε

This holds for all ε > 0 soU(f) = L(f)
(1)⇒ (2)
let ε > 0 and chooseP1 andP2 such that:
L(f, P1) > L(f)− 1

2ε andU(f, P2) < U(f) + 1
2ε

Because of the characterizations of infimum and supremium.
LetPε = P1 ∪ P2 then:
U(f, Pε)− L(f, Pε) ≤ U(f, P2)− L(f, P1) = [U(f, P2)− U(f)] + [L(f)− L(f, P1)] < 1

2ε+ 1
2ε = ε

SoU(f, Pε)− L(f, Pε) < ε
Continuous functions: f continuous on [a, b]⇒ f integrable on [a, b]
Proof:
f is uniformly continuous on [a, b]
For all ε > 0 there exists δ > 0 s.t. |x− y| < δ ⇒ |f(x)− f(y)| < ε

b−a for allx, y ∈ [a, b]
LetP be a partition such thatxk − xk−1 < δ for all k = 1, . . . , n
There exists yk, zk ∈ [xk−1, xk] s.t. f(yk) = Mk and f(zk) = mk

Note: |yk − zk| < δ ⇒Mk −mk = f(yk)− f(zk) < ε
b−a

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk)(xk − xk−1) < ε
b−a

n∑
k=1

(xk − xk−1)

= ε
b−a · (xn − x0) = ε

b−a (b− a) = ε
SoU(f, P )− L(f, P ) < εSo integrable.

Example:

f(x) =

{
1 ifx 6= 1

0 ifx = 1
is integrable on [0, 2]

Let 0 < ε < 1 and take the partition:P = {0, 1− 1
3ε, 1 + 1

4ε, 2}
U(f, P ) = 2 andL(f, P ) = 2− 1

2ε soU(f, P )− L(f, P ) < ε
2:

f(x) =

{
1 ifx ∈ Q
0 ifx 6∈ Q

is not integrable on [0, 1]

LetP be any partition of [0, 1] then:
[xk, xk−1] ∩Qc 6= ∅ ⇒ ml = 0 for all k = 1, . . . , n⇒ L(f, P ) = 0
[xk, xk−1] ∩Q 6= ∅ ⇒Mk = 1 for all k − 1, . . . , n⇒ U(f, P ) = 1
SoL(f, P ) 6= U(f, P ) and therefore not differentiable.
3:

f(x) =

{
x ifx ∈ Q
0 ifx 6∈ Q

is NOT integrable on [0, 1]

for any partitionP of [0, 1] we have: U(f, P )− L(f, P ) =
n∑
k=1

(Mk−mk)(xk−xk−1) =
n∑
k=1

xk(xk−xk−1) >
n∑
k=1

1
2 (xk+xk−1)(xk−xk−1) =

n∑
k=1

1
2 (x2k−x2k−1) = 1

2
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Increasing functions:

Any increasing function f : [a, b]→ R integrable.
For any partition of [a, b] we have:
Mk = sup{f(x) : x ∈ [xk−1, xk]} = f(xk)
mk = inf{f(x) : x ∈ [xk−1, xl]} = f(xk−1)
An equispaced partitionP gives:
Equispaced: Every interval has the same size.

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk)(xk − xk−1) = b−a
n

n∑
k=1

[f(xk)− f(xk−1)]

= (b−a)(f(b)−f(a))
n → 0 asn→∞

Example:

f(x) =

{
0 ifx = 0
1
p
ifx ∈ ( 1

p+1
, 1
p
] for some p ∈ N

Since f is increasing it is integrable on [0, 1]
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Lecture 17:

Split property: f : [a, b] → R bounded and c ∈ (a, b) then f integrable on [a, b] ⇔ f integrable

on [a, c] and [c, b]. In that case:
b∫
a

f =
c∫
a

f +
b∫
c

f

Proof
Part 1:
Let ε > 0, and pick a parititionP of [a, b] s.t.U(f, P )− L(f, P ) < ε
LetPc = P ∪ {c} then:U(f, Pc)− L(f, Pc) < ε
Pc is in fact the original partition where we add the point c
ThenQ = Pc ∩ [a, c] is a partition of [a, c] and:
m := #intervals inQ

n := #intervals inPc

}
⇒ m < n

m < n implies:

U(f,Q)−L(f,Q) =
m∑
k=1

(Mk−mk)(xk−xk−1) ≤
n∑
k=1

(Mk−mk)(xk−xk−1) = U(f, Pc)−L(f, Pc) < ε

SoU(f, Pc)− L(f, Pc) < ε, conclusion f integrable on [a, c]
Part 2:
LetP1 andP2 partititions of [a, c] and [c, b] s.t.: U(f, Pi)− L(f, Pi) <

1
2ε for i = 1, 2

ThenP = P1 ∪ P2 is a partition of [a, b] and:
U(f, P ) = U(f, P1) + U(f, P2)
L(f, P ) = L(f, P1) + L(f, P2)
U(f, P )− L(f, P ) < 1

2ε+ 1
2ε = ε

Conclusion: f integrable on [a, b]
Part 3: Let ε andP1, P2 be as before:
b∫
a

f ≤ U(f, P ) < L(f, P ) + ε = L(f, P1) + L(f, P2) + ε ≤
c∫
a

f +
b∫
c

f + ε

So we can claim:
b∫
a

f ≤
c∫
a

f +
b∫
c

f

Because:x ≤ y + ε,for ε > 0 thenx ≤ y
Part 4:
Let ε > 0 andP1, P2 be as before:
c∫
a

f +
b∫
c

≤ U(f, P1) + U(f, P2) < L(f, P1) + f, P2 + ε = L(f, P ) + ε ≤
∫ b
a
f + ε

So we have
c∫
a

f +
b∫
c

≤
b∫
a

f

And because we have:
b∫
a

f ≤
c∫
a

f +
b∫
c

f And:
c∫
a

f +
b∫
c

≤
b∫
a

f we proved it.
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Integrable, algebraic properties and order properties:

f integrable on a closed interval [a, b]:
b∫
a

f = −
a∫
b

f and
c∫
c

f = 0 for all c ∈ [a, b]

Corollary: regardless order a, b, c we have:
b∫
a

f =
c∫
a

f +
b∫
c

f

Algebraic properties: If f, g integrable on [a, b] then:

1. f + g integrable and
b∫
a

(f + g) =
b∫
a

f +
b∫
a

g

2. kf integrable and
b∫
a

kf = k
b∫
a

f for all k ∈ R

Order properties:

(1) f integrable on [a, b] thenm ≤ f(x) ≤M ⇒ m(b− a) ≤
b∫
a

f ≤M(b− a)

(2) f, g integrable on [a, b] and f(x) ≤ g(x) for allx ∈ [a, b] then
b∫
a

f ≤
b∫
a

g

(3) f integrable on [a, b] then |f | integrable and

∣∣∣∣∣ b∫a f
∣∣∣∣∣ ≤ b∫

a

|f |

Proof:

(1) For all partitions of [a, b], we haveL(f, P ) ≤
b∫
a

f ≤ U(f, P )

TakingP = {a, b} gives:
U(f, P ) = (b− a) · sup{f(x) : x ∈ [a, b]} ≤M(b− a)
L(f, P ) = (b− a) · inf{f(x) : x ∈ [a, b]} ≥ m(b− a)

(2) Since 0 ≤ g(x)− f(x) for allx ∈ [a, b] we have: 0 · (b− a) ≤
b∫
a

(g − f)⇒ 0 ≤
b∫
a

g −
b∫
a

f

(3)P any partition of [a, b] and:
Mk = sup{f(x) : x ∈ [xk−1, xk]} mk = inf{f(x) : x ∈ [xk−1, xk]}
M ′k = sup{|f(x)| : x ∈ [xk−1, xk]} m′k = inf{|f(x)| : x ∈ [xk−1, xk]}

Claim:M ′k −m′k ≤Mk −mk

For all ε > 0 exists y, z ∈ [xk−1, xk] s.t.
M ′k − 1

2ε < |f(y)|
m′k + 1

2ε > |f(z)|
M ′k −m′k − ε < |f(y)| − |f(z)| ≤ |f(y)− f(z)| ≤Mk −mk soM ′k −m′k ≤Mk −mk

U(|f |, P )−L(|f |, P ) =
n∑
k=1

(M ′k−m′k)(xk−xk−1) ≤
n∑
k=1

(Mk−mk)(xk−xk−1) = U(f, P )−L(f, P ) < ε

Hence f integrable⇒ |f | integrable.

−|f(x)| ≤ f(x) ≤ |f(x)| ⇒ −
b∫
a

|f | ≤
b∫
a

f ≤
b∫
a

|f | ⇒

∣∣∣∣∣ b∫a f
∣∣∣∣∣ ≤ b∫

a

|f |
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The fundamental theorem

Part 1:
Assume that:

(1) f is integrable on [a, b] (2)F differentiable on [a, b] andF ′(x) = f(x) ,∀x ∈ [a, b]

Then
b∫
a

f = F (b)− F (a)

Part 2:
Let f integrable on [a, b] and define:
F (x) =

∫ x
a
F (t)dtwherex ∈ [a, b]

Then:
(1)F uniformly continuous on [a, b]
(2) If f is continuous at c thenF is differentiable at c andF ′(c) = f(c)

Proof part 1:
LetP be any partition of [a, b]:

F (b)− F (a) =
n∑
k=1

[F (xk)− F (xk−1)]

Because:F (b)− F (a) = F (xn)− F (0)
MVT where tk ∈ (xk−1, xk):
n∑
k=1

f(tk)(xk − xk−1) <
n∑
k=1

Mk(xk − xk−1) = U(f, P )

F (b)− F (A) ≥ L(f, P ) by similar proof, so we have:
L(f, P ) ≤ F (b)− F (a) ≤ U(f, P )
Taking sup/inf over all partitions gives:
L(f) ≤ F (b)− F (a) ≤ U(f)
Since f integrable, it follows that:
L(f) = U(f) = F (b)− F (a)

Proof Part 2:
Statement 1:
since f integrable on [a, b] there existsM > 0 s.t.: |f(x)| ≤M ∀x ∈ [a, b]
We can not compute integrals of unbounded functions so that is the reason we can say that.
Ifx, y ∈ [a, b] withx ≥ y then:

|F (x)− F (y)| =

∣∣∣∣∣ x∫y f(t)dt

∣∣∣∣∣ ≤ x∫
y

|f(t)|dt ≤M |x− y|

For given ε > 0 take δ = ε
M So therefore,F uniformly continuous on [a, b]

Statement 2:
forx 6= c we have:
F (x)−F (c)

x−c −f(c) = 1
x−c

x∫
c

f(t)dt−f(c) = 1
x−c

x∫
c

f(t)−f(c)dtLet ε > 0 be arbitrary and pick δ > 0 s.t.:

|x− c| < δ ⇒ |f(x)− f(c)| < ε

Since |t− c| ≤ |x− c| < δ it follows:
∣∣∣F (x)−F (c)

x−c − f(c)
∣∣∣ = 1

|x−c|

∣∣∣∣ x∫
c

f(t)− f(c)dt

∣∣∣∣ ≤ 1
|x−c| |x− c| · ε = ε

So
∣∣∣F (x)−F (c)

x−c − f(c)
∣∣∣ < ε
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