# Some basis:

PROOF BY CONTRADICTION: proof opposite statement false, therefore original statement true.

# Sets:

SET: collection of ELEMENTS: objects in a set.

| A&B | sets: |
|-----|-------|
|     |       |

| Name                    | Notation                                    | Meaning                                                  |
|-------------------------|---------------------------------------------|----------------------------------------------------------|
|                         | $x \in A$                                   | x an element of $A$                                      |
|                         | $x \not\in A$                               | x  not an elemnt of  A                                   |
| Union                   | $A \cup B$                                  | $x \in A \operatorname{and} / \operatorname{or} x \in B$ |
| INTERSECTION            | $A \cap B$                                  | $x \in A \text{ and } \in B$                             |
| Empty set:              | Ø                                           | Set contains no element.                                 |
| E  and  S  are DISJOINT | $E \cap S = \emptyset$                      |                                                          |
| Complement of $A$       | $A^c = \{ x \in \mathbb{R} : x \notin A \}$ | the set of all elements in $R$ , but not in $A$          |
| Subset                  | $A \subseteq B$                             | All elements in $A$ are also elements in $B$             |
| Supset                  | $B \supseteq A$                             | B contains all the elements of $A$                       |
|                         | A = B                                       | When $A \subseteq B$ and $B \subseteq A$                 |
| De Morgan's Law         | $(A \cap B)^c = A^c \cup B^c$               | Proof? Exercise 1.2.5                                    |
|                         | $(A\cup B)^c=A^c\cap B^c$                   |                                                          |

 $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$  all elements of  $A_2$  also elements of  $A_1$  and so on (so  $A_{n+1}$  elements of  $A_n$ )

# Functions and real numbers:

A&B are sets, a, b real numbers.

**Definition 1.2.3: Functions:** 

FUNCTION: from A to B maps each element  $x \in A$  with a single element of B Notation:  $f: A \to B$  given  $x \in A$  and expression f(x) represents element B assiociate with x by f DOMAIN: A&RANGE: subset of B given by:  $\{y \in B : y = f(x) \text{ for some } x \in A\}$ 

# Theorem 1.2.6:

 $\begin{array}{l} a,b \mbox{ equal iff for every real number } \varepsilon > 0, \mbox{ it follows } |a-b| < \varepsilon \\ \mbox{ PROOF:} \\ (1): \mbox{If } a = b \mbox{ then } |a-b| < \varepsilon \\ |a-b| = 0 \mbox{ and because } \varepsilon > 0 \mbox{ we know } |a-b| < \varepsilon \\ (2): \mbox{ If } |a-b| < \varepsilon \mbox{ then } a = b \\ \mbox{ Assume } a \neq b \mbox{ so } \varepsilon_0 = |a-b| > 0 \mbox{ must be true, which is the case because } \varepsilon > 0 \\ \mbox{ But } |a-b| < \varepsilon_0 \mbox{ and } |a-b| = \varepsilon_0 \mbox{ can not be both true.} \\ \mbox{ Therefore } a \neq b \mbox{ unacceptable } \Rightarrow a = b \end{array}$ 

$$\label{eq:INDUCTION:} \begin{split} & \text{Induction:} \\ & \text{If}\,S\subset\mathbb{N} \mbox{ with: } 1\in S \quad n\in\mathbb{N}\,\mbox{and}\,n\in S \quad n+1\in S \mbox{ then}\,S=\mathbb{N} \end{split}$$

# Lecture 1:

# Lemma and proof:

$$\begin{split} |x| &= \max\{x, -x\}\\ \text{Definition of an absolute value: } |x| &= \begin{cases} x \text{ if } x \geq 0\\ -x \text{ if } x < 0 \end{cases}\\ \text{Proof:}\\ x > 0 \Rightarrow -x \leq 0 \Rightarrow -x \leq x \Rightarrow \max\{-x, x\} = x = |x|\\ x < 0 \Rightarrow -x > 0 \Rightarrow -x > x \Rightarrow \max -x, x = -x = |x| \end{split}$$

# Algebraic properties:

| Name          | Rule                                         | Proof:                                                                   |       |        |                                   |
|---------------|----------------------------------------------|--------------------------------------------------------------------------|-------|--------|-----------------------------------|
|               |                                              | x                                                                        | y     | xy     | conclusion                        |
|               |                                              | x > 0                                                                    | y > 0 | xy > 0 | $ xy  = xy =  x  \cdot  y $       |
| Product rule  | $ xy  =  x  \cdot  y $                       | x > 0                                                                    | y < 0 | xy < 0 | $ xy  = x(-y) =  x  \cdot  y $    |
|               |                                              | x < 0                                                                    | y > 0 | xy < 0 | $ xy  = (-x)y =  x  \cdot  y $    |
|               |                                              | x < 0                                                                    | y < 0 | xy > 0 | $ xy  = (-x)(-y) =  x  \cdot  y $ |
| Quotient rule | $\left \frac{x}{y}\right  = \frac{ x }{ y }$ | Proof by yourself.                                                       |       |        |                                   |
|               | where $y \neq 0$                             | it is sufficient to show that $\left \frac{1}{y}\right  = \frac{1}{ y }$ |       |        |                                   |
|               | a-b  =  b-a                                  | a - b  =  -(b - a)  =  b - a                                             |       |        |                                   |

# Inequalities:

| Name                   | Rule                                       | Proof                                                                                                                                                                                                                              |
|------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lemma 2                | $ x  \le a \Leftrightarrow -a \le x \le a$ | $\begin{aligned}  x  &\leq a  \Leftrightarrow  \max\{-x, x\} \leq a \\ &\Leftrightarrow  -x \leq a \text{ and } x \leq a \\ &\Leftrightarrow  x \geq -a \text{ and } x \leq a \\ &\Leftrightarrow  -a \leq x \leq a \end{aligned}$ |
| Triangle               | $ x+y  \le  x + y $                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                              |
| inequality             |                                            |                                                                                                                                                                                                                                    |
| Reverse                | $  x  -  y   \le  x - y $                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                              |
| triangle<br>Inequality |                                            |                                                                                                                                                                                                                                    |

# Upper bounds:

| Name       | Bounded above                                                                       | Least upper bound                                                                   |
|------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Definition | $A \subseteq \mathbb{R}$ is bounded above if:                                       | $s \in \mathbb{R}$ least upper bound of $A \subseteq \mathbb{R}$ if:                |
|            | $\exists b \in \mathbb{R} \text{ s.t. } a \leq b \text{ and } \forall a \in A$      | s upper bound $A$                                                                   |
|            |                                                                                     | $b$ any upper bound $A$ , and $s \leq b$                                            |
| Notation   | the number $b$ is called an upper bound                                             | $s = \sup(A)$ called the supremum of the set $A$                                    |
| Example    | $A = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \}$ | $A = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \}$ |
|            | $b \ge 1$ upper bound for A                                                         | Claim: $\sup(A) = 1$                                                                |
|            |                                                                                     | Clearly, $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$                            |
|            |                                                                                     | so 1 is an upper bound for $A$                                                      |
|            |                                                                                     | if $b$ is any upper bound for $A$                                                   |
|            |                                                                                     | then $a \leq b$ for all $a \in A$                                                   |
|            |                                                                                     | in particular, for $a = 1$ we have $1 \le b$                                        |
| Number     | Definition 1.3.1                                                                    | Definition 1.3.2                                                                    |

# Lemma 1.3.8:

if s is an upper bound for A then:  $s = \sup A \leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{s.t.} s - \varepsilon < a$ PROOF PART 1:

| Proof part 1:                                                       | Proof part 2:                                                                          |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Let $\varepsilon > 0$ arbitrary                                     | Let $b$ upper bound for $A$                                                            |
| $s - \varepsilon < s \rightarrow s = \varepsilon$ not upper bound A | $b < s$ then for $\varepsilon = s - b$ exists $a \in A$ s.t. $b = s - \varepsilon < a$ |
| $\exists a \in A \text{ s.t } s = \varepsilon < a$                  | b not upper bound, contradiction.                                                      |
|                                                                     | Hence $s \le b$ implies $s = \sup(A)$                                                  |

# Lower bounds

| Name       | LOWER BOUND:                                                     | Greatest lower bound                            |
|------------|------------------------------------------------------------------|-------------------------------------------------|
| Definition | $l$ is called a lower bound of $A \subseteq \mathbb{R}$ if:      | $i \in \mathbb{R}$ is called the greatest lower |
|            | $\exists l \in \mathbb{R} \text{ s.t.} l \leq a \forall a \in A$ | bound of $A \subseteq \mathbb{R}$ if:           |
|            |                                                                  | i lower bound for $A$ and                       |
|            |                                                                  | l any lower bound for $A$                       |
|            |                                                                  | where $l \leq i$                                |
| Notation   |                                                                  | $i = \inf(A)$                                   |
| Example    | $\{\frac{1}{n}: n \in \mathbb{N}\}$ any number $l \leq 0$        |                                                 |
|            | lower bound for $A$                                              |                                                 |
| Number     | Definition 1.3.1                                                 |                                                 |

Lemma 4:

if i is a lower bound for A then:  $i = \inf A \leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{ s.t.} a < i + \varepsilon$ PROOF: **Exercise 1.3.1** 

# Maximum and minimum:

**Definition 1.3.4 Maximum and minimum:** real number  $a_0$  maximum of set A if  $a_0$  element of A and  $a_0 \ge a$  for all  $a \in A$ 

real number  $a_1$  minimum of A if  $a_1 \leq a$  for all  $a \in A$ 

**Warning:**  $\sup(A)$  not always maximum A. For example  $\sup\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \} = 1$  no largest element!  $\inf(A)$  not always minimum A. For example  $\inf\{1, \frac{1}{2}, \frac{1}{3}, \ldots\} = 0$ , no smallest element.

# The real line:

| Name             | Set          | Ordening(<,=,>)? | Algebraic operations? |
|------------------|--------------|------------------|-----------------------|
| Natural numbers  | $\mathbb{N}$ | Yes              | +×                    |
| Integers         | $\mathbb{Z}$ | Yes              | $+-\times$            |
| Rational numbers | Q            | Yes              | $+ - \times :$        |
| Real numbers     | $\mathbb{R}$ | Yes              | $+ - \times :$        |

What is the difference between  $\mathbb{Q}$  and  $\mathbb{R}$ ?

 $\mathbb Q$  has many gaps. Numbers like  $\sqrt{2}, e, \pi$  are not in  $\mathbb Q$ 

# Example:

By example that  $\sqrt{2} \notin \mathbb{Q}$ 

| Theorem | $\sqrt{2} \notin \mathbb{Q}$                                                            |
|---------|-----------------------------------------------------------------------------------------|
| Proof:  | Assume $\sqrt{2} = \frac{p}{q}$ , with $p, q \in \mathbb{Z}$ and $\text{GCD}(p, q) = 1$ |
|         | $\sqrt{2} = \frac{p}{q} \Rightarrow 2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2$         |
|         | So $p^2$ is even, so p is even, say $p = 2k$                                            |
|         | $\Rightarrow p^2 = 2q^2 \Rightarrow (2k)^2 = 2q^2 \rightarrow q^2 = 2k^2$               |
|         | $q^2$ is even so q is even.                                                             |
|         | $GCD(p,q) \neq 1$ , at least 2                                                          |
|         | so proven by contradiction $\sqrt{2} \neq \frac{p}{a}$ so $\sqrt{2} \notin \mathbb{Q}$  |

# Do least upper bounds exist?

We used the definitions we saw in the first lecture for least upper bound and greatest lower bound.



Red: the set  $A = \{x \in \mathbb{Q} : x \leq 2\}$ Blue: the upper bounds for A that are in  $\mathbb{Q}$ Is this subset bounded above? Therefore we use a new axiom.

# **Definitions:**

AXIOM OF COMPLETENESS (AOC): Every nonempty set of  $\mathbb R$  is bounded above has a least upper bound.

Theorem 1.4.2: ARCHIMENDEAN PROPERTY:

Consist 2 parts:

| Theorem | $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ s.t. } n > x$           | $\forall y > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < y$ |
|---------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Proof   | Not true? $\mathbb{N}$ bounded above                                               | Let $y > 0$ arbitrary                                                   |
|         | $AOC \Rightarrow \alpha = \sup \mathbb{N} \text{ where } \alpha \notin \mathbb{N}$ | Set $x = \frac{1}{y}$                                                   |
|         | $\alpha - 1$ not upper bound.                                                      | By the first statement, exists $N \in \mathbb{N}$ s.t. $n > x$          |
|         | Exists $n \in \mathbb{N}$ s.t. $\alpha - 1 < n \Rightarrow \alpha < n + 1$         | Therefore $\frac{1}{n} < \frac{1}{x} = y$                               |
|         | $n+1 \in \mathbb{N} \Rightarrow \alpha$ Not upper bound $\mathbb{N}$               |                                                                         |
|         | Contradiction.                                                                     |                                                                         |

term 1b 2020-2021

Page 4

# Nested Interval Property closed interval:

# Theorem 1.4.1:

 $[a_1, b_1] \supseteq [a_2, b_2] \supseteq \ldots \to \bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$ PROOF: We have to show that  $\exists x \in \mathbb{R} \text{ s.t } x \in [a_n, b_n] \forall n \in \mathbb{N}$ Define  $A = \{a_n : n \in \mathbb{N}\}$ 

so we see that  $b_n$  upper bound  $a_n$ 

AoC gives us:  $x := \sup(A)$  exists.

 $\begin{array}{ll} a_n \leq x & \forall n \in \mathbb{N} & \text{Since } x = \text{upper bound for } A \\ x \leq b_n & \forall n \in \mathbb{N} & \text{Since } x = \text{ least upper bound of } A \\ x \in [a_n, b_n] & \forall n \in \mathbb{N} \end{array}$ 

# Nested Interval Property open interval:

The NIP does not work for open intervals: EXAMPLE:

Proof that for  $I_n = (0, \frac{1}{n})$  we have that  $\bigcap_{n=1}^{\infty} I_n = \emptyset$ 

When  $x \leq 0$  we have  $x \notin I_n$  for all  $n \in \mathbb{N}$ When x > 0 we have that  $\exists k \in \mathbb{N}$  s.t.  $\frac{1}{k} < x$  (by AP), And therefore,  $\exists k \in \mathbb{N}$  s.t.  $x \notin I_k$ So in both cases we have  $x \notin \bigcap_{n=1}^{\infty} I_n$  so  $\bigcap_{n=1}^{\infty} I_n = \emptyset$ 

# **Rational and Real numbers:**

 $\begin{array}{l} \textbf{Theorem 1.4.3: } \forall a, b \in \mathbb{R} \text{ with } a < b \,, \exists r \in \mathbb{Q} \text{ s.t. } a < r < b \\ \textbf{PROOF:} \\ (1) a < 0 < b \, \text{then one nice } r \ \text{ between it, namely the rational number 0} \\ (2) 0 \leq a < b \, (\text{works also for } b < a \leq 0, \text{ by working with } -a \, \text{and } -b) \\ \exists, n, m \in \mathbb{N} \text{ s.t.} \\ & \quad \frac{1}{n} < b - a \\ m - 1 \leq na < m \\ \end{bmatrix} \Rightarrow m \leq na + 1 < n(b - \frac{1}{n}) + 1 = nb \\ \textbf{Combine inequalities.} \\ \begin{array}{c} na < m \\ m < mb \\ \end{array} \right\} \Rightarrow na < m < nb \Rightarrow a < \frac{m}{n} < b \\ \hline m_n \in \mathbb{Q} \text{ so there exists indeed } r \in \mathbb{Q} \text{ s.t. } a < r < b \end{array}$ 

# Existence of square roots:

 $\begin{aligned} \exists \alpha \in \mathbb{R} \text{ s.t. } \alpha^2 &= 2 \\ \text{PROOF:} \\ \text{define } A &= \{t \in \mathbb{R} : t^2 \leq 2\} \text{ and } \alpha = \sup A \text{, then:} \\ \alpha^2 &< 2 \text{ take } n \in \mathbb{N} \text{ with } \frac{1}{n} < \frac{2-\alpha^2}{2\alpha+1} \\ \text{So } (\alpha + \frac{1}{n})^2 &= \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2} \leq \alpha^2 + \frac{2\alpha+1}{n} < 2 \\ \text{So } \alpha + \frac{1}{n} \in A \text{ so } \alpha \text{ not upper bound } A \end{aligned}$ 

$$\begin{array}{l} \alpha^2 > 2 \text{ take } n \in \mathbb{N} \text{ with } \frac{1}{n} < \frac{\alpha^2}{2\alpha} \\ (\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} > \alpha^2 - \frac{2\alpha}{n} > 2 \\ \text{Also contradiction, therefore, the theorem is true} \end{array}$$

1-1 CORRESPONDENCE: counting without counting by making sets.

# **Functions:**

# **Definition:**

FUNCTION:  $f : A \to B$  maps each  $a \in A$  with single element  $b = f(a) \in B$ . DOMAIN: A&RANGE:  $ran(f) = f(A) = \{f(a) : a \in A\}\&$ CODOMAIN: B**Types:** INJECTIVE (ONE-TO ONE) if  $f(a) = f(b) \to a = b$ SURJECTIVE (ONTO) if B = f(A) i.e.  $\forall b \in B \exists a \in A$  s.t. b = f(a)BIJECTIVE: if f injective and surjective (unique correspondence between elements of A&B)

### Allowed and not allowed.

Two elements in domain can correspond to 1 element in the codomain. All elements in the domain must correspond to some element in the codomain. An element in the domain can not correspond to more then 1 element in the codomain.

### **Cardinality:**

Two sets same cardinality if there exists a bijective function:  $f : A \to B$ Notation:  $A \sim B$ So 1 to one correspondence, so equally many elements in both sets. If  $\sim$  equivalence relation:  $A \sim A$  $A \sim B \leftrightarrow B \sim A$  $A \sim B \text{ and } B \sim C \Rightarrow A \sim C$ PROOF:  $(a, b) \sim (1, 1) \text{ condsider.}$  $g : (a, b) \to (-1, 1) \text{ so } g(x) = \frac{2x - a - b}{b - a}$ Use  $(a, b) \sim \mathbb{R}$  and  $(-1, 1) \sim \mathbb{R}$  so  $(a, b) \sim (-1, 1)$ 

### Example:

1:  $\mathbb{N} = \{1, 2, 3, \ldots\} \sim \mathbb{E} = \{2, 4, 6, \ldots\}$ A bijection is given by:  $f : \mathbb{N} \to \mathbb{E}$  so: f(n) = 2nMoral: there are "as many" even numbers as natural numbers.

# $\mathbf{2}$ :

$$\begin{split} \mathbb{N} &\sim \mathbb{Z} \\ \text{A bijection (exercise) is given by:} \\ f: \mathbb{N} &\to \mathbb{Z} \\ f(n) &= \begin{cases} (n-1)/2 \text{ if } n \text{ is odd} \\ -n/2 \text{ if } n \text{ is even} \end{cases} \\ \text{Moral: there are "as many" integers as natural numbers!} \end{split}$$

### 3:

to prove that  $(-1, 1) \sim \mathbb{R}$  consider:  $f: (-1,1) \to \mathbb{R}$  and  $f(x) = \frac{x}{1-x^2}$ 

f is injective:  $f(a) = f(b) \leftrightarrow a(1-b^2) = b(1-a)^2 \leftrightarrow a-b+a^2b-ab^2 = 0 \leftrightarrow (a-b)(ab+1) = 0$ (ab+1) can not be zero (because of the domain)  $\rightarrow a - b = 0 \rightarrow a = b$ Note:  $a, b \in (-1, 1) \to ab \in (-1, 1)$ 

f is surjective:  $f(x) = r \leftrightarrow x = r(1-x^2) \leftrightarrow rx^2 + x - r = 0$  is solvible for all  $r \in \mathbb{R}$ Note: discriminant =  $1 + 4r^2 > 0$  $x = \frac{-1 \pm \sqrt{1 + 4r^2}}{2r}$ These equation has 2 solutions. For any  $r \in \mathbb{R}$  has unique solution  $x \in (-1, 1)$ Hence f is bijective.

# Countable set

Countable set A if  $A \sim S$  for some  $S \subseteq \mathbb{N}$ . Opposite: uncountable. Example is  $\mathbb{Z}$ Lemma: When A conuntable  $\leftrightarrow, \exists f : A \to \mathbb{N}$  injective. **PROOF:** PROOF PART 1 | PROOF PART 2  $S\subseteq \mathbb{N}$  $f: A \to S$  bijjective  $f: A \to \mathbb{N}$  injective So  $f: A\mathbb{N}$  injective  $S = \operatorname{ran}(f)$  $f: A \to S$  bijective. Lemma:

A countable  $\leftrightarrow g : \mathbb{N} \to A$  surjective Proof: T 1

| I ROOF.                                                                                             |                                                                                        |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Proof part 1                                                                                        | Proof part 2                                                                           |
| $f: A \to S \subset \mathbb{N}$ bijective                                                           | take smalles $n_a$ to make it unique.                                                  |
| $\forall n \in S \exists unique a_n \in A \text{ s.t. } f(a_n) = n$                                 | $\forall a \in A \exists \text{ smalles } n_a \in \mathbb{N} \text{ s.t. } g(n_a) = a$ |
| Define $g: \mathbb{N} \to A$                                                                        | Define $f: A \to \operatorname{ran} f \subset \mathbb{N}$ , where $f(a) = n_a$         |
| $g(n) = \begin{cases} a_n \text{ if } n \in S\\ \text{any element in A if } n \notin S \end{cases}$ | $g(n_a) = a \operatorname{and} f(a) = n_a$                                             |
| The map $g$ is surjective.                                                                          | The map $f$ is bijective                                                               |

# Corollary:

 $\left. \begin{array}{c} B \operatorname{contable} \\ f: A \to B \operatorname{injective} \\ A \operatorname{contable} \\ g: A \to B \operatorname{surjective} \end{array} \right\} \Rightarrow B \operatorname{countable}.$ **Theorem:**  $A_n$  countable for all  $n \in \mathbb{N} \to \bigcup_{n=1}^{\infty} A_n$  countable.

# Example:

1:  $\mathbb{N} \times \mathbb{N} = \{(n,m) : n, m \in \mathbb{N}\} \text{ is countable since: } f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(n,m) = 2^n 3^m \text{ is injective.}$ EXERCISE: find a bijective map  $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 2:  $A, B \text{ countable} \to A \cup B \text{ countable.}$ Assume:  $f : A \to \mathbb{N}$  and  $g : B \to \mathbb{N}$  injective, and let:  $h : A \cup B \to \mathbb{N}$   $h(x) = \begin{cases} 2f(x) \text{ if } x \in A \\ 2g(x) + 1 \text{ if } x \in B \text{ and } x \notin A \end{cases}$  This map h is injective. 3:  $A_n = \{0, \pm \frac{1}{n}, \pm \frac{2}{n}, \ldots\}$  countable. Why?  $\mathbb{Q} = \bigcup_{n=1}^{\infty} A_n$  is countable.

# Uncountable sets

| Theorem    | The interval $(0,1)$ uncountable                                                               | $\mathbb R$ uncountable.                                                                                      |
|------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Proof      | Cantor (1891) Take $g : \mathbb{N} \to (0, 1)$                                                 | $\operatorname{Assume} \mathbb{R} \operatorname{countable}$                                                   |
|            | $g(1) = 0.d_1 1 d_1 2 d_1 3 d_1 4 \dots$                                                       |                                                                                                               |
|            | Then: $g(2) = 0.d_{21}d_{22}d_{23}d_{24}\dots$                                                 | If $g : \mathbb{N} \to \mathbb{R}$ surjective then:                                                           |
|            | :                                                                                              |                                                                                                               |
|            | Define $t \in (0, 1)$ by $t = 0.c_1c_2c_3c_4$                                                  | $\mathbb{R} = \{x_1, x_2, x_3, \dots, \}$ where $x_n = g(n)$                                                  |
|            | Where $c_n = \begin{cases} 2 \text{ if } d_{nn} \neq 2\\ 3 \text{ if } d_{nn} = 3 \end{cases}$ | So we show that $\exists x \in \mathbb{R} \text{ s.t. } x \neq x_n \text{ where } n \in \mathbb{N}$           |
|            | Then $t \neq g(2)$ for all $n \in \mathbb{N}$                                                  | Choose closed and bounded intervals as follows:                                                               |
|            |                                                                                                | $I_1 \text{ s.t. } x_1 \not\in I_1$                                                                           |
|            | So $g$ is not surjective                                                                       | $I_2 \subseteq I_1 \text{ s.t. } x_2 \notin I_2$                                                              |
|            |                                                                                                | ÷                                                                                                             |
|            |                                                                                                | $\operatorname{NIP} \Rightarrow \exists x \in \mathbb{R} \operatorname{s.t} x \in \bigcap_{i=1}^{\infty} I_n$ |
|            |                                                                                                | But $x \neq x_n \forall n \in \mathbb{N}$ because $x_n \notin I_n$                                            |
| Corollarly |                                                                                                | $\mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$                                                              |
|            |                                                                                                | $\mathbb{Q}$ countable, $\mathbb{Q}^c$ countable                                                              |
|            |                                                                                                | So $\mathbb{Q} \cup \mathbb{Q}^c$ countable, contradiction.                                                   |
|            |                                                                                                | There are more irrationals then rationals.                                                                    |

# tangent line, sequence and neighborhood:

NEWTON'S ROOT FINDING METHOD: Newton's root finding method



Where equation tangent line:  $y = f'(x)(x - x_1) + f(x)$  and: Root of tangent line  $x_2 := x_1 - \frac{f(x_1)}{f'(x_1)}$  | Iternative proces  $x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$  for n = 1, 2, ...

SEQUENCE: a function with domain  $\mathbb{N}$ Can be written as infinite list of numbers: (-)  $(1, \frac{1}{n}, \frac{1}{3}, \ldots)$ (-)  $(\frac{n+1}{n})_{n=1}^{\infty} = (\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \ldots) x_1 = 2$  and  $x_{n+1} = \frac{1}{2}(x_n + 1)$ 

LIMIT OF A SEQUENCE:  $(a_n)$  converges to a if  $\forall \varepsilon > 0$ , there  $\exists N \in \mathbb{N}$  s.t.  $n \ge N \to |a_n - a| < \varepsilon$ Notation:  $a = \lim a_n$  or  $a_n \to a$ . So  $a_n$  gets arbitrarily close to a as n grows larger.

NEIGHBORHOOD: (1) the set  $V_{\varepsilon} = \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon)$  for  $a \in \mathbb{R}$ —, and  $\varepsilon > 0$ NEIGHBORHOOD: (2)  $\forall \varepsilon > 0$ , there  $\exists N \in \mathbb{N}$  s.t.  $n \ge N \to a_n \in V_{\varepsilon}(a)$  when  $a_n$  converges to aSo the tail of the sequence get trapped in  $V_{\varepsilon}(a)$ 



Example:

| $\lim \frac{1}{n} = 0$                                                 | $\lim(\frac{6n+7}{3n+1}) = 2$                                                                                             |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                        | $\left \frac{6n+7}{3n+1} - 2\right  = \left \frac{6n+1}{3n+1} - \frac{6n+2}{3n+1}\right  = \frac{5}{3n+1} < \frac{5}{3n}$ |  |  |
| Let $\varepsilon > 0$ arbitrary                                        | Let $\varepsilon > 0$ arbitrary                                                                                           |  |  |
| by AP, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{N} < \varepsilon$     | by AP, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{N} < \frac{3}{5}\varepsilon$                                             |  |  |
| $n \ge N \to \frac{1}{n} \le \frac{1}{N} < \varepsilon$                | $n \ge N \to \left  \frac{6n+7}{3n+1} - 2 \right  < \frac{5}{3n}$                                                         |  |  |
| $\rightarrow \left \frac{1}{n} - 0\right  = \frac{1}{n} < \varepsilon$ | $\leq \frac{5}{3N} < \varepsilon$                                                                                         |  |  |

# Limit and (di)convergence

STANDARD LIMITS:

| Standard limit                  | condition                           | standard limit            | condition  |
|---------------------------------|-------------------------------------|---------------------------|------------|
| $\lim \frac{1}{n^{\alpha}} = 0$ | $\alpha > 0$                        | $\lim c^n = 0$            | -1 < c < 1 |
| $\lim c^n n^\alpha = 0$         | $-1 < c < 1, \alpha \in \mathbb{R}$ | $\lim \sqrt[n]{c} = 1$    | c > 0      |
| $\lim \sqrt[n]{n} = 1$          |                                     | $\lim \frac{n!}{n^n} = 0$ |            |

DIVERGENT SEQUENCE: a sequence that does not converge. For example:  $(a_n) = (-1, 1, -1, 1, ...)$  is divergent.

Definition of convergence:  $\exists \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \ge N \rightarrow |a_n - a| < \varepsilon$ Definition of divergence:  $\exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \exists n \ge N \text{ s.t. } |a_n - a| \ge \varepsilon$ Proof:

 $\operatorname{Choose} \varepsilon = 1 \operatorname{and} N \in \mathbb{N} \ \text{arbitrary}.$ 

 $\begin{array}{l} \text{Case:} a \geq 0 \, n = 2N+1 \rightarrow |a_n-a| = |-1-a|-1+a \geq \varepsilon \\ \text{Case:} a < 0 \, n = 2N \rightarrow |a_n-a| = |1-a| = 1-a > \varepsilon \end{array}$ 

# **Bounded Sequences:**

BOUNDED SEQUENCE  $(a_n)$ : if  $\exists M > 0$  s.t  $|a_n| \leq M \forall n \in \mathbb{N}$ 

**Theorem:**  $(a_n)$  convergent  $\rightarrow (a_n)$  bounded. Note: can be used to prove sequence diverges. PROOF: Let  $a = \lim a_n$  then for  $\varepsilon = 1$  exists  $n \in \mathbb{N}$  s.t.: by triangle inequality:  $n \ge N \rightarrow |a_n| - a < 1$  so  $||a_n| - |a|| < 1$  so  $|a_n| - |a| < 1$  so  $|a_n| < 1 + |a|$ For  $M = \max\{|a_1|, |a_n|, \dots, |a_{N-1}|, 1 + |a|\}$  we have  $|a_n| \le M$  for all  $n \in \mathbb{N}$ So  $(a_n)$  is convergent leads to  $(a_n)$  is bounded.

# Examples:

**1:**  $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, ...)$  is bounded (take M = 1) **2:**  $(b_n) = (1, 4, 9, 16, 25, ...)$  is not bounded. **3:**  $(a_n) = n^2$  diverges because it is not bounded. For  $M = \max\{|a_1|, |a_n|, ..., |a_{N-1}|, 1 + |a|\}$  we have:  $|a_n| \le M$  for all  $n \in \mathbb{N}$ 

# Algebraic porperties:

| $\operatorname{if} a = \operatorname{li}$ | $\lim a_n$ and | $b = \lim_{b \to 0} b$ | $b_n$ then: |
|-------------------------------------------|----------------|------------------------|-------------|
|-------------------------------------------|----------------|------------------------|-------------|

| Algebraic propertie                                        | Proof                                                                                                  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $\lim(ca_n) = ca \ (\text{where} \ c \in \mathbb{R})$      |                                                                                                        |
| $\lim(a_n + b_n)a + b$                                     | $ (a_n + b_n) - (a + b)  =  (a_n - a) + (b_n - b)  \le  a_n - a  +  b_n - b $                          |
|                                                            | Let $\varepsilon > 0$ arbitrary:                                                                       |
|                                                            | $\exists N_1 \in \mathbb{N} \text{ s.t. } n \geq N_1 \rightarrow  a_n - a  < \frac{1}{2}\varepsilon$   |
|                                                            | $\exists N_2 \in \mathbb{N} 	ext{ s.t. } n \geq N_2  ightarrow  b_n - b  < rac{1}{2} arepsilon$       |
|                                                            | $N = \max\{N_1, N_2\} \text{ then:}$                                                                   |
|                                                            | $n \ge N \to  (a_n + b_n) - (a + b)  < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$  |
| $\lim(a_n b_n) = ab$                                       | $ a_nb_n - ab  =  a_nb_n - ab_n + ab_n - ab $                                                          |
|                                                            | $=  b_n(a_n - a) + a(b_n - b)  \le  b_n(a_n - a)  +  a(b)n - b $                                       |
|                                                            | $=  b_n  a_n - a  +  a  b_n - b  \le M a_n - a  +  a  b_n - b $                                        |
|                                                            | $(b_n)$ convergent and by that bounded.                                                                |
|                                                            | $\varepsilon > 0$ gives:                                                                               |
|                                                            | $\exists N_1 \in \mathbb{N} \text{ s.t. } n \geq N_1 \rightarrow  a_n - a  < \frac{\varepsilon}{2M}$   |
|                                                            | $\exists N_2 \in \mathbb{N} \text{ s.t. } n \geq N_2 \rightarrow  b_n - b  < \frac{\varepsilon}{2 a }$ |
|                                                            | Define $N = \max\{N_1, N_2\}$ then:                                                                    |
|                                                            | $n \ge N \to  a_n b_n - ab  < \varepsilon$                                                             |
| $\lim(\frac{a_n}{b_n}) = \frac{a}{b} \text{ if } b \neq 0$ |                                                                                                        |

# **Order properties:**

 $\lim a_n = a \& \lim b_n = b$  then

| Order property                                         | Proof                                                                              |
|--------------------------------------------------------|------------------------------------------------------------------------------------|
| $(1) a_n \ge 0 \forall n \in \mathbb{N} \to a \ge 0$   | assume $a < 0$ , for $\varepsilon =  a $ exists $N \in \mathbb{N}$ s.t.            |
|                                                        | $ n \ge N \to  a_n - a  < \varepsilon \to a - \varepsilon < a_n < a + \varepsilon$ |
|                                                        | $a_n < a + \varepsilon = 0$ contradiction.                                         |
| $(2) a_n \le b_n \forall n \in \mathbb{N} \to a \le b$ | $a_n \le b_n \operatorname{then} b_n - a_n \ge 0$                                  |
|                                                        | $b - a = \lim(b_n - a_n) \ge 0 \to b \ge 0$                                        |
| $(3) c \le b_n \forall n \in \mathbb{N} \to c \le b$   | $a_n = c \text{ from } 2$                                                          |
| $(4) a)n < c \forall n \in \mathbb{N} \to a < c$       | $b_n = c \text{ from } 2$                                                          |

Strict inequalities are not aways preserved.  $\forall n \in \mathbb{N} \frac{1}{n} > 0$  but  $\lim \frac{1}{n} = 0$   $\forall n \in \mathbb{N} \frac{n}{n+1} < 1$  but  $\lim \frac{n}{n+1} = 1$ 

# monotone sequence:

MONOTONE SEQUENCE  $a_n$  if it is  $\begin{cases}
\text{increasing: } a_n \leq a_{n+1} \, \forall n \in \mathbb{N} \\
\text{Decreasing: } a_n \geq a_{n+1} \, \forall n \in \mathbb{N}
\end{cases}$ 

 $\begin{array}{l} (a_n) \text{ bounded}\& \text{ monotone} \to (a_n) \text{ converges.} \\ \text{PROOF: } A = \{a_n : n \in \mathbb{N}\} \text{ bounded.} \\ (1) (a_n) \text{ increasing} \to \lim a_n = \sup A \\ \text{Proof (CTD) assume } (a_n) \text{ increases and let } s = \sup\{a_n : n \in \mathbb{N}\} \\ \text{Let } \varepsilon > 0 \text{ aribtrary} \to s - \varepsilon \text{ not upper bound.} \\ \text{Exists } N \in \mathbb{N} \text{ s.t. } s = \varepsilon < a_n. \text{ For } N \ge N \text{ we have:} \\ s - \varepsilon < a_N \le a_n \le s \le s_\varepsilon \to |a_n - s| < \varepsilon \text{ so } a_n \text{ converges.} \\ (2) (a_n) \text{ decreasing} \to \lim a_n = \inf A \text{ (exercise!)} \end{array}$ 

# Examples:

 $\begin{aligned} \mathbf{1:} & (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots) \text{ and } (b_n) = (1, 1, 2, 2, 4, 4, \ldots) \text{ are monotone.} \\ \mathbf{2:} & (c_n) = (1, 0, 1, 0, \ldots) \text{ is not monotone.} \\ \mathbf{3:} & \text{if } a_{n+1} = \sqrt{1+a_n} \text{ with } a_1 = 1 \text{ then } (a_n) \text{ converges.} \\ & (a) \text{ proof by induction that } a_n \text{ is increasing.} \\ & \text{Base case:} \\ & a_1 = 1, a_2 = \sqrt{2} \text{ so } a_1 < a_2 \\ & \text{Induction step:} \\ & \text{Assume } a_n < a_{n+1} \text{ for some } n \text{ we have: } 1 + a_n < 1 + a_{n+1} \rightarrow \sqrt{1+a_n} < \sqrt{1+a_{n+1}} \rightarrow a_{n+1} < a_{n+2} \\ & \text{So } a_n < a_{n+1} < a_{n+2} < \ldots \text{ so increasing.} \\ & (b) \text{ proof by induction that } (a_n) \text{ is bounded.} \\ & a_1 = 1 \rightarrow a_1 < 2 \\ & a_n < 2 \text{ for some } n \rightarrow 1 + a_n < 3 \rightarrow \sqrt{1+a_n} < \sqrt{3} < \sqrt{2} \rightarrow a_{n+1} < 2 \\ & \text{So a bounded sequence.} \\ & (c) \text{ Find } \lim a_n \\ & \text{By MCT, exists } a = \lim a_n a_{n+1}^2 = 1 + a_n \text{ so } \lim a_{n+1}^2 = \lim(1+a_n) \Rightarrow a^2 = 1 + a \Rightarrow a = \frac{1+\sqrt{5}}{2} \end{aligned}$ 

# Subsequences:

Pick  $n_k \in \mathbb{N}$  s.t.:  $1 \le n_1 < n_2 < n_3 < \dots$ If  $(a_n)$  is a sequence then:  $(a_{n_k}) = (a_{n_1}, a_{n_2}, a_{n_3}, \dots)$  is called A SUBSEQUENCE OF  $(a_n)$ Note:  $n_k \ge k$  for all  $k \in \mathbb{N}$ 

**Theorem:**  $\lim a_n = a \to \lim a_{n_k} = a$ 

PROOF: Let  $\varepsilon > 0$  arbitrary so  $\exists N \in \mathbb{N}$  s.t  $n \ge N \to |a_n - a| < \varepsilon$ Use  $n_k \ge k$  so you can say that  $k \ge N \Rightarrow n_k \ge N$ So  $|a_{n_k} - a| < \varepsilon$ 

### Examples:

1:  $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ...)$ Example of subsequences:  $n_k = k + 4 \rightarrow (a_{n_k}) = (\frac{1}{5}, \frac{1}{6}, \frac{1}{7}, ...)$   $n_k = 2k \rightarrow (a_{n_k}) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, ...)$   $n_k = 10^k \rightarrow (a_{n_k}) = (\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, ...)$  2:  $(a_n) = (-1, 1, -1, 1, ...)$  diverges: Take 2 subsequences:  $n_k = 2k \rightarrow (a_{n_k}) = (1, 1, 1, 1, ...) \rightarrow \lim a_{n_k} = 1$   $n_k = 2k - 1 \rightarrow (a_{n_k}) = (-1, -1, -1, -1, ...) \rightarrow \lim a_{n_k} = -1$ Different subsequences have different limits  $\rightarrow (a_n)$  diverges.

### **Bolzano-Weierstrass theorem:**

Every bounded sequence convergent subsequence PROOF:  $\forall n \exists M > 0 \text{ s.t. } a_n \in [-M, M]$ Every bounded sequence has a convergent subsequence.

$$\begin{array}{c|c} & I_1 & a_{n_2} \\ \hline & & & \\ \hline & & & \\ -M & & \\ & a_{n_1} & & \\ & & I_2 \end{array} \begin{array}{c} 0 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Halving proces: nested intervals:  $I_1 \subset I_2 \subset I_3 \subset \cdots \Rightarrow \text{NIP} \to \text{there exists } x \in \bigcap_{n=1}^{\infty} I_n$ 

Each  $I_k$  contains infinitely many terms of sequence. Pick  $n_1 \in \mathbb{N}$  with  $a_{n_1} \in I_1$ Pick  $n_2 \in \mathbb{N}$  with  $n_2 > n_1$  and  $a_{n_2} \in I_2$ Pick  $n_3 \in \mathbb{N}$  with  $n_3 > n_2$  and  $a_{n_3} \in I_3$ : Note that  $\begin{cases} x \in I_k \\ a_{n_k} \in I_k \end{cases} \to |a_{n_k} - x| \leq \text{length}(I_k) = \frac{2M}{2^k} \to 0$ So convergent subsequence.

## add infinitely many numbers.

 $\begin{array}{l} \text{infinite series:} \sum\limits_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots \\ n-\text{th partial sum:} s_n = a_1 + a_2 + \dots + a_n \\ \text{if } s_n = s \text{ then we say that the series converges to } s \\ \text{EULER'S FAMOUS EXAMPLE:} \\ \sum\limits_{k=1}^{\infty} \frac{1}{k^2} \text{ converges:} \\ \text{PROOF:} \\ s_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} \operatorname{so} s_n < s_{n+1} \text{ for all } n \in \mathbb{N} \operatorname{so} s_n < 2 \text{ for all } n \in \mathbb{N} \\ \text{MCT: Limits } s_n \text{ exists.} \\ \text{Why is } s_n < 2 \text{ for all } n \in \mathbb{N}? \\ s_n = 1 + \frac{1}{2\cdot 2} + \frac{1}{3\cdot 3} + \frac{1}{4\cdot 4} + \dots + \frac{1}{n\cdot n} < 1 + \frac{1}{2\cdot 1} + \frac{1}{3\cdot 2} + \frac{1}{4\cdot 3} + \dots + \frac{1}{n(n-1)} \\ = 1 + (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n-1} - \frac{1}{n} = 1 + 1 - \frac{1}{n} = 2 - \frac{1}{n} \\ s_n < 2 - \frac{1}{n} \text{ so } s_n < 2 \\ \text{Remark: since } s_n < 2 \text{ ,for all } n \text{ the order limit theorem implies:} \\ \sum\limits_{k=1}^{\infty} \frac{1}{k^2} = \lim s_n \leq 2 \\ \text{Euler found also: } \sum\limits_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \text{ and } \sum\limits_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90} \end{array}$ 

Euler found also:  $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$  and  $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$ For even power of k we know the solution of the infinite summ, for odd powers of k the solution is unknown.

# The harmonic series and integral test for converges:

Harmonic series:  $\sum_{k=1}^{\infty} \frac{1}{k} \text{ diverges.}$ PROOF:  $s_n = 1 + \frac{1}{n} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$   $s_{n^k} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \ldots + \frac{1}{8}) + \ldots + (\frac{1}{2^{k-1}+1} + \ldots + \frac{1}{2^k})$   $s_{n^k} > 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + \ldots + (\frac{1}{8} + \ldots + \frac{1}{8}) + \ldots + (\frac{1}{2^k} + \ldots + \frac{1}{2^k})$   $= 1 + \frac{1}{2} + 2(\frac{1}{4} + 4(\frac{1}{8}) + \ldots + 2^{k-1}(\frac{1}{2^k}))$   $s > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2}$   $s > 1 + \frac{k}{2}$  for all  $k \in \mathbb{N}$ So  $s_n$  is unbounded (because the subsequence is divergent) and there

So  $s_n$  is unbounded (because the subsequence is divergent) and therefore  $s_n$  is divergent. The integral test:

Assume that  $f: [1, \infty) \to \mathbb{R}$  is positive, continuous and monotonically decreasing. Let  $a_k = f(k)$  then  $\sum_{k=1}^{\infty} a_k$  converges  $\leftrightarrow \int_{k=1}^{\infty} f(x) dx < \infty$ PROOF: where  $s_n = a_1 + a_2 + \ldots + a_n$  because  $a_k > 0$  increasing.

$$\int_{1}^{n} f(x)dx < \infty \text{ so } s_n \text{ bounded} \& \text{ convergent}, \int_{1}^{\infty} f(x)dx = \infty \text{ so } s_n \text{ unbounded} \& \text{ divergent}.$$

# Cauchy sequence:

| Name     | Theorem                                            | Proof or meaning.                                                             |
|----------|----------------------------------------------------|-------------------------------------------------------------------------------|
| CAUCHY   | $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ | The terms get close to eachother                                              |
| SEQUENCE | s.t. $n, m \ge N \to  a_n - a_m  < \varepsilon$    |                                                                               |
|          | $(a_n)$ convergent $\rightarrow (a_n)$ cauchy      | assume $a = \lim a_n$                                                         |
|          |                                                    | For all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that           |
|          |                                                    | $n \ge N \to  a_n - a  < \frac{1}{2}\varepsilon$                              |
|          |                                                    | $ m, n \ge N \to  a_n - a_m  =  (a_n - a) - (a_m - a) $                       |
|          |                                                    | $\leq  a_n - a  +  a_m - a  < \varepsilon$                                    |
| Lemma    | $(a_n)$ cauchy $\rightarrow (a_n)$ bounded         | For $\varepsilon = 1$ there exists $N \in \mathbb{N}$ s.t.                    |
|          |                                                    | $n, m \ge N \to  a_n - a_m  < 1$                                              |
|          |                                                    | fix $m = N$ :                                                                 |
|          |                                                    | $n \ge N \to  a_n - a_N  < 1$                                                 |
|          |                                                    | $\rightarrow  a_n -  a_N   < 1$                                               |
|          |                                                    | $\rightarrow  a_n  -  a_N  < 1$                                               |
|          |                                                    | $\rightarrow  a_n  < 1 +  a_N $                                               |
|          |                                                    | For $M = \max\{ a_1 ,  a_2 , \dots,  a_{n-1}, 1 +  a_N  \}$                   |
|          |                                                    | we have $ a_n  \leq M$ for all $n \in \mathbb{N}$                             |
|          | $(a_n)$ Cauchy $\rightarrow (a_n)$ convergent      | Lemma gives $(a_n)$ bounded.                                                  |
|          |                                                    | BW gives $(a_n)$ convergent subsequence $(a_{n_k})$                           |
|          |                                                    | so $a = \lim(a_{n_k})$                                                        |
|          |                                                    | for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t.                |
|          |                                                    | $n,m \ge N \to  a_n - a_m  < \frac{1}{2}\varepsilon$                          |
|          |                                                    | Fix an index: $n_k > N$ s.t. $ a_{n_k} - a  < \frac{1}{2}\varepsilon$ , then: |
|          |                                                    | $n \ge N \to  a_n - a  =  a_n - a_{n_k} + a_{n_k} - a $                       |
|          |                                                    | $ a_n - a  \le  a_n - a_{n_k}  +  a_{n_k} - a $                               |
|          |                                                    | $ a_n - a  < \varepsilon$                                                     |

# Properties of series and algebraic limit theorem:

INFINITE SERIES:  $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots$ N-TH PARTIAL SUM:  $s_n = a_1 + a_2 + \dots + a_n$ CONVERGENCE:  $\sum_{k=1}^{\infty} a_k = A \leftarrow \text{by definition} \rightarrow \lim s_n = A$ ALGEBRAIC LIMIT THEOREM: if  $\sum_{k=1}^{\infty} a_k = A$  and  $\sum_{k=1}^{\infty} b_k = B$  then:  $(1) \sum_{k=1}^{\infty} ca_k = cA$  for all  $c \in \mathbb{R}$   $(2) \sum_{k=1}^{\infty} (a_k + b_k)A + B$  **Proof:** 

Apply analogous theorem for sequences to partial sums.

# Cauchy criterion:

Theorem: The following statements are equivalent:

(1)  $\sum_{k=1}^{\infty} a_k$  converges. (2) for all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  s.t.  $n > m \ge N \to |a_{m+1} + a_{m+2} + \ldots + a_n| < \varepsilon$ PROOF: Note that:  $|s_n - s_m| = |a_{m+1} + \ldots + a_n|$ Statement  $1 \Leftrightarrow (s_n)$  converges  $\Leftrightarrow (s_n)$  Cauchy  $\Leftrightarrow$  statement 2. So equivalent.

# Example:

 $\sum_{k=1}^{\infty} \frac{1}{k} \text{ diverges.}$ For any  $m \in \mathbb{N}$  and n = 2m we have:  $|a_{m+1} + a_{m+2} + \ldots + a_n| = \frac{1}{m+1} + \frac{1}{m+2} + \ldots + \frac{1}{2m} > \frac{m}{2m} = \frac{1}{2}$ So:  $|a_{m+1} + a_{m+2} + \ldots + a_n| > \frac{1}{2}$ Hence, the Cauchy criterion fails. So, this serie is diverges.

# Necessary condition for convergence:

**Theorem:**  $\sum_{k=1}^{\infty} a_k \text{ converges} \Rightarrow \lim a_k = 0$ PROOF: Let  $\varepsilon > 0$  be arbitrary. There exists  $N \in \mathbb{N}$  s.t.  $n > m \ge N \Rightarrow |a_{m+1} + a_{m+2} + \ldots + a_n| < \varepsilon$  $n = m + 1 \text{ and } m \ge N \Rightarrow |a_{m+1}| < \varepsilon$ 

Warning: opposite is not true. Counterexample:  $\lim \frac{1}{k} = 0$  but  $\sum_{k=1}^{\infty} \frac{1}{k}$  diverges. Note:

The previous theorem also gives a test for divergence.

Example:  $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+1}{2k} = 1 - \frac{3}{4} + \frac{4}{6} - \frac{5}{8} + \dots$ Diverges since  $\lim a_k = \lim (-1)^{k+1} \cdot \frac{k+1}{2k}$  does not exist.

# Comparison test

**Theorem** if  $0 \le a_k \le b_k$  for all  $k \in \mathbb{N}$ , then: (1)  $\sum_{k=1}^{\infty} b_k$  converges  $\rightarrow \sum_{k=1}^{\infty} a_k$  converges. (2)  $\sum_{k=2}^{\infty} a_k$  diverges  $\rightarrow \sum_{k=2}^{\infty} b_k$  diverges PROOF:  $|a_{m+1} + a_{m+2} + \ldots + a_n| = a_{m+1} + a_{m+2} + \ldots + a_n$   $\le b_{m+1} + b_{m+2} + \ldots + b_n = |b_{m+1} + b_{m+2} + \ldots + b_n|$ Apply the cauchy criterion for series. Note:

Theorem does not have to hold for all k but just for large k

# Example:

$$\begin{split} &\sum_{k=1}^{\infty} \frac{1}{k!} \text{ converges} \\ &\text{For } k \geq 4 \text{ we have: } k! \geq k^2 \rightarrow \frac{1}{k!} \leq \frac{1}{k^2} \\ &\text{Apply comparison test: } \sum_{k=1}^{\infty} \frac{1}{k^2} \text{ converges} \rightarrow \sum_{k=1}^{\infty} \frac{1}{k!} \text{ converges.} \end{split}$$

# Alternating series test:

Theorem: assume:  $(-) 0 \le a_{k+1} \le a_k$  for all  $k \in \mathbb{N}$  $(-)\lim a_k = 0$ Then the alternating series  $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$  converges. **PROOF:** Consider the partial sums:  $s_n = a_1 - a_2 + a_3 - \ldots + (-1)^{n+1} a_n$ Proof (Ctd): the partial sums form nested intervals:  $I_n = [s_{2n}, s_{2n-1}] \Rightarrow I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$  $\operatorname{NIP} \Rightarrow \exists s \in \mathbb{R} \text{ s.t. } s \in I_n \text{ for all } n \in \mathbb{N}$ let  $\varepsilon > 0$  be arbitrary. Choose  $N \in \mathbb{N}$  s.t.  $a_{2N} < \varepsilon$  then:  $n \ge 2N \Rightarrow s, s_n \in I_n = [s_{2N}, s_{2n-1}]$  $\Rightarrow |s - s_n| \le s_{2N-1} - s_{2N}$  $\Rightarrow |s - s_n| \leq a_{2N}$  $\Rightarrow |s - s_n| < \varepsilon$ 

# Example:

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \dots \text{ converges.}$ This follows from the alternating series test:  $a_k = \frac{1}{k} \text{ satisfies } 0 \le a_{k+1} \le a_k \text{ and } \lim a_k = 0$ 

# Absolute vs. conditional convergence:

**Theorem:**  $\sum_{k=1}^{\infty} |a_k|$  converges  $\rightarrow \sum_{k=1}^{\infty} a_k$  converges. PROOF:  $0 \le a_k + |a_k| \le 2|a_k|$  for all  $k \in \mathbb{N}$ Comparison test  $\rightarrow \sum_{k=1}^{\infty} (a_k + |a_k|)$  converges. Apply Algebraic limit theorem:  $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty} |a_k|$  converges.

# Absolute and conditional convergent:

 $\sum_{k=1}^{\infty} a_k \text{ is called:}$ (1) ABSOLUTELY CONVERGENT if  $\sum_{k=1}^{\infty} |a_k|$  converges. Example:  $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$ (2) CONDITIONALLY CONVERGENT if it converges, but  $\sum_{k=1}^{\infty} |a_k|$  diverges. Example:  $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ 

# Geometric and telescoping series:

GEOMETRIC SERIES: is of the form:  $\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + \dots$ PARTIAL SUMS:  $s_n = a + ar + ar^2 + \dots + ar^{n-1} \Rightarrow rs_n = ar + ar^2 + ar^3 + \dots + ar^n \Rightarrow (1-r)s_n = a(1-r^n)$ For |r| < 1 we have:  $s_n = \lim \frac{(1-r^n)}{1-r} = \frac{a}{1-r}$ 

TELESCOPING SERIES: of the form  $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (b_k - b_{k+1})$ Successive terms cancel eachother out:  $s_n = a_1 + a_2 + a_3 + \ldots + a_n$  $a_n = (b_n - b_n) + (b_n - b_n) + (b_n - b_n) + (b_n - b_n) = b_n$ 

 $s_n = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \ldots + (b_n - b_{n+1}) = b_1 - b_{n+1}$ The series converges  $\Leftrightarrow (b_n)$  converges.

### Example:

# 1: We have 0.999... = 1This follows from: $0.999... = \sum_{k=1}^{\infty} \frac{9}{10^k} = \frac{1}{10} \sum_{k=0}^{\infty} 9(\frac{1}{10})^k = \frac{1}{10} \cdot \frac{9}{1-\frac{1}{10}} = 1$ 2: $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... = 1$ Solution: $s_n = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1})$ $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{n} - \frac{1}{n+1})$ $= 1 - \frac{1}{n+1} \to 1$ $s_n = \sum_{k=1}^n \frac{1}{k^2 + 7k + 12} = \sum_{k=1}^n \frac{1}{(k+3)(k+4)} = \sum_{k=1}^n (\frac{1}{k+3} - \frac{1}{k+4})$ $= (\frac{1}{4} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{6}) + (\frac{1}{6} - \frac{1}{7}) + ... + (\frac{1}{n+3} - \frac{1}{n+4})$

### H.M. Goossens

# Lecture 7

# open and closed intervals, open sets:

CLOSED INTERVAL: (endpoints included):  $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ OPEN INTERVAL: (endpoints not included):  $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ How to define open and closed for arbitrary sets? OPEN SETS:  $O \subset \mathbb{R}$  open if  $\forall a \in O$  there  $\exists \varepsilon > O$  s.t.  $V_{\varepsilon} \subset O$ Recall: $V_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon)$ Note: the empty set  $\emptyset$  is open by definition.

# Example:

1: the interval (c, d) is open. take  $x \in (c, d)$  arbitrary. Take  $\varepsilon = \min\{|x - c|, |x - d|\}$ , then  $V_{\varepsilon} \subset (c, d)$ 2: The interval [c, d) is not open, for  $x = c \operatorname{no} \varepsilon > 0$  works. Because for any  $\varepsilon, c - \varepsilon$  is not in the interval. 3:  $\mathbb{Q}$  is not open. Take  $\varepsilon > 0$  arbitrary. Take  $n \in \mathbb{N}$  s.t.  $\frac{1}{n} < \frac{e}{\sqrt{2}}$  and set  $x = \frac{\sqrt{2}}{n}$ Then  $x \in V_{\varepsilon}(0)$  but  $x \neq \mathbb{Q}$ 

# Unions and intersections:

### Theorem:

(1) Union of arbitrary collections of open sets are open. (2) Intersections of finite collections of open sets are open. PROOF: (1) Let  $O = \bigcup_{i \in I} O_i$  with each  $O_i$  open.  $x \in O \to x \in O_i$  for some  $i \in I$ There exists  $\varepsilon > 0$  s.t.  $V_{\varepsilon}(X) \subseteq O_i \subseteq O$ (2) let  $O = O_1 \cap O_2 \cap \ldots \cap O_n$  with each  $O_i$  open.  $x \in O \to x \in O_i$  for all  $i = 1, \ldots, n$ For all  $i = 1, \ldots, n$  there exists,  $\varepsilon_i > 0$  such that  $V_{\varepsilon_i}(x) \subseteq O_i$ For  $\varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_n\}$  we have:  $V_{\varepsilon}(x) \subseteq O_i$  for all  $i = 1, \ldots, n$ WARNING: intersection infinitely many open sets need not to be open: Counterexample:  $O_n$  is open for all  $n \in \mathbb{N}$ : because  $\bigcap_{n=1}^{\infty} O_n = \{0\}$  is not open.

# Warning:

The intersection of infinitely many open sets NEED NOT BE open! Counterexample:  $)_n = (-\frac{1}{n}, \frac{1}{n})$ , is open for all  $n \in \mathbb{N}$  $\bigcap_{n=1}^{\infty} O_n = \{0\}$  is not open!

term 1b 2020-2021

Page 19

# Limit points:

LIMIT POINT: x is a limit point of  $A \subseteq \mathbb{R}$  if:  $\forall \varepsilon > 0$  of  $V_{\varepsilon}(x)$  intersects A in some point other than xNote: limit points of A may or may not belong to A. **Theorem:** The following statements are equivalent. (1) x is a limit point of A(2) There exists a sequence  $a_n \neq x, \forall n \in \mathbb{N}$  and  $x = \lim a_n$ PROOF:  $1 \rightarrow 2$ Let  $n \in \mathbb{N}$  and set  $\varepsilon = \frac{1}{n}$ There exists  $a_n \in V_{\varepsilon}(x) \cap A$  with  $a_n \neq x$ Note that:  $|a_n - x| < \varepsilon = \frac{1}{n}$   $2 \rightarrow 1$ for all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  s.t.:  $n \geq N \rightarrow |a_n - x| < \varepsilon$ By assumption  $A_N \neq x$  and  $A_n \in A$  we can conclude that  $A_n \in V_{\varepsilon}(x)$ 

### Example:

1:  $x = 0 \text{ is a limit point of } A = \{\frac{1}{n} : n \in \mathbb{N}\} \quad x = 0 \text{ and } x = 1 \text{ are limits of } A = (0, 1)$   $\text{Take } \varepsilon > 0 \text{ arbitrary.} \quad \text{For } x = 0 \text{ take } a_n = \frac{1}{2n}$   $\text{Take } n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < \varepsilon \quad \text{For } x = 1 \text{ take } a_n = \frac{n}{n+1}$   $\text{Then } \frac{1}{n} \in V_{\varepsilon}()) \cap A$   $\text{Note: } 0 \notin A$ 

Prove same result by means of definition.

# Closed sets:

CLOSED TEST: contains it limits. Can't leave set by taking limits. **Theorem:** Equivalent: (1) F is closed (2) Every Cauchy sequence in F has its limit in FPROOF:  $1 \rightarrow 2 \operatorname{Let}(a_n) \subset F$  be Cauchy.  $x = \lim a_n \operatorname{exists}$ ; now consider 2 cases: (a):  $x \neq a_n$  then for all  $n \in \mathbb{N} \to x$  is a limit point of  $F \to x \in F$ (b):  $x = a_n$  for some  $n \in \mathbb{N} \to x \in F$  holds trivially.  $2 \to 1 \operatorname{Let} x$  be a limit point of F  $x = \lim a_n \operatorname{with} a_n \in F$  and  $a_n \neq x$  for all  $n \in \mathbb{N}$ ( $a_n$ ) convergent  $\to (a_n)$  Cauchy  $\to x \in F$  by assumption.

# Example:

[c, d] is closed. Let x be a limit point of  $[c, d] x = \lim x_n$  for some sequence  $(x_n) \subseteq [c, d]$  $c \leq x_n \leq d$  for all  $n \in \mathbb{N}$ Order limit theorem:  $c \leq x \leq d \rightarrow x \in [c, d]$ 

# Closure:

CLOSURE OF  $A: \overline{A} = A \cup \{\text{all limit points of } A\}$  **Theorem:**  $\overline{A}$  is closed. PROOF: (1) x limit point of A and  $A \subset \overline{A}$  then x limit point  $\overline{A}$ (2)  $A = A \cup LL$  with  $L = \{\text{Limit points of } A\}$  x limit point of  $\overline{A} \to \forall \varepsilon > 0$  there  $\exists y \in V_{\varepsilon}(x) \cap \overline{A}$  where  $y \neq x$ So  $y \in A \lor y \in L$ (a)  $y \in A \to x$  is a limit point of A(b)  $y \in L$   $\to \forall \delta > 0$  there  $\exists z \in V_{\delta}(y) \cap A$  where  $z \neq y$ Note:  $V_{\delta}(y) \subset V_{\varepsilon}(x)$  around  $\{x\}$  for  $\delta$  small enough  $\to x$  is a limit point of A **Theorem completeness:** (1) O open  $\Leftrightarrow O^c$  closed.

(2) F closed  $\Leftrightarrow F^c$  open.

MUTUALLY EXCLUSIVE:

Sets are not open OR closed. They can be neither open nor closed (0, 1] and  $\mathbb{Q}$ , but they also can be open and closed,  $\mathbb{R}$  and  $\emptyset$ 

So impossible to prove openess or closeness by contradiction.

UNIONS AND INTERSECTIONS:

(1) uninons of finite collections of closed sets are closed.(2) intersections of arbitrary collections of closed sets are closed.

PROOF:

### example

1: if A = (0, 1) then  $\overline{A} = [0, 1]$ All points of A are limit points. Also, x = 0 and x = 1 are limit points. If x < 0 or x > 1 then x is not a limit point of A

```
\begin{array}{l} \mathbf{2:}\\ \overline{\mathbb{Q}} = \mathbb{R}\\ \mathrm{Take}\, x \in \mathbb{R} \text{ and } \varepsilon > 0 \, \text{ arbitrary.}\\ \mathbb{Q} \, \text{ is dense in } \mathbb{R}: \, \text{there exists } r \in \mathbb{Q}\\ \, \text{ such that } x < r < x + \varepsilon\\ \, \mathrm{Hence} \in V_{\varepsilon}(x) \cap \mathbb{Q} \text{ and } r \neq x\\ \mathrm{So, \, each}\, x \in \mathbb{R} \, \text{ is a limit point of } \mathbb{Q} \end{array}
```

# Sequential definition:

COMPACT SET a set  $K\subseteq\mathbb{R}$  is compact if every sequence in K has a convergent subsequence with a limit in K

# Theorem:

 $K \subseteq \mathbb{R}$  compact  $\leftrightarrow K$  closed and bounded. PROOF:

| 1 1001.                                                                                                         |                                              |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| $\rightarrow$                                                                                                   | $\leftarrow$                                 |
| Assume $k$ not bounded                                                                                          | $(x_n) \subseteq K$                          |
| exists $x_n \subseteq K$ with $ x_n  > n$ for all $n \in \mathbb{N}$                                            | $K$ bounded, so $(x_n)$ bounded.             |
| $x_n$ no convergent subsequence.                                                                                | B-w theorem: $(x_n)$ convergent subsequence. |
| Contradiction: $K$ bounded.                                                                                     | $x = \lim x_{n_k}$                           |
|                                                                                                                 | K closed $\rightarrow x \in K$               |
| x limit point of K, prove $x \in K$                                                                             |                                              |
| $\exists x_n \subseteq K \text{ s.t. } x = \lim x_n$                                                            |                                              |
| $K \operatorname{compact} \exists (x_{n_k}) \operatorname{converge} \operatorname{to} y \text{ where } y \in K$ |                                              |
| $(x_{n_k}) \to x$ as well $x = y \in K$                                                                         |                                              |
| GENERALIZATION OF NIP:                                                                                          |                                              |

**Theorem:** Assume  $K_n \neq \emptyset$  is compact for all  $n \in \mathbb{N}$  and  $K_1 \supseteq K_2 \supseteq \ldots$  then  $\bigcap_{n=1}^{\infty} K_n$  nonempty.

# Example:

| 1:                                                                         | 2:                                                              |
|----------------------------------------------------------------------------|-----------------------------------------------------------------|
| Every finite set is compact                                                | [a,b] compact                                                   |
| Let $K = \{a_1, a_2, \ldots, a_p\}$                                        | Let $(x_n) \subseteq [a, b]$ arbitrary                          |
| Let $(x_n) \subset K$ be arbitrary.                                        | $(x_n)$ bounded.                                                |
| Without loss of generality $x_n = a_1$                                     | BW-theorem: $(x_n)$ convergent subsequence $(x_{n_k})$          |
| for infinitely many $n \in \mathbb{N}$                                     | Let $x = \lim x_{n_k}$                                          |
| Take $(x_{n_k})$ s.t. $x_{n_k} = a_1$ for all $k \in \mathbb{N}$           | Order limit theorem: $a \leq x_{n_k} \leq b$ for all $k$        |
| $\lim x_{n_k} = a_1 \in K$                                                 | $a \leq x \leq b$                                               |
| 3:                                                                         | 4:                                                              |
| (0,1] not compact                                                          | $\mathbb{R}$ not compact                                        |
| Take $x_n = \frac{1}{n} \in (0, 1]$                                        | $x_n = n$ no convergent subsequence.                            |
| Every subsequence $(x_{n_k})$ has                                          |                                                                 |
| $\lim x_{n_k} = 0 \text{ but } 0 \notin (0, 1]$                            |                                                                 |
| 5                                                                          | 6                                                               |
| Every finite set compact                                                   | $K = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ not compact |
| $K = \{a_1, a_2, \dots, a_p\}$                                             | K bounded: $ x  \leq 1$ for each $x \in K$                      |
| $K$ bounded: $x \in K \to$                                                 | K closed if $x < 0$ or $x > 0$ then                             |
| $ x  \le M = \max\{ a_1 , \dots  a_p \}$                                   | x not limit point of $K$ (exercise!)                            |
| $K$ closed: $a_1 < a_2 < \ldots < a_p$                                     | $x = 0$ limit point of $K$ and, $x \in K$                       |
| $K^c = (-\infty, a_1) \cup (a_1, a_2) \cup \ldots \cup (a_p, \infty)$ open |                                                                 |

Page 22

# **Open covers:**

$$\begin{split} &A\subseteq \mathbb{R} \text{ and assume } O_i\subseteq \mathbb{R} \text{ where } i\in I \text{ are open.} \\ &\text{OPEN COVER: } O_i \text{ if } A\subseteq \bigcup_{i\in I} O_i \end{split}$$

**Theorem:** K compact  $\leftrightarrow$  K has a finite subcover. PROOF:

| <del>(</del>                                                                              | $\Rightarrow$                                                                           |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $O_n = (-n, n), n \in \mathbb{N}$ open cover K                                            | $O_i, i \in I$ open cover K without finite subcover                                     |
| $K \subset O_1 \cup \ldots \cup O_N = (-N, N)$ for some $N \in \mathbb{N}$ .              | Take bounded closed interval $J_1 \subseteq K$                                          |
| Therefore, $K$ is bounded.                                                                | Halving proces: construct $J_n$ s.t.:                                                   |
|                                                                                           | $J_1 \subseteq J_2 \subseteq J_3 \subseteq \dots$                                       |
|                                                                                           | $K \cap J_n$ not be convered by finitely many $O_i$ 's                                  |
|                                                                                           | $K \cap J_n$ compact for all $n \in \mathbb{N}$                                         |
|                                                                                           | Length $J_n = \frac{J_1}{2^{n-1}} \to 0$                                                |
| Let $y$ be a limit point of $K$                                                           | $\bigcap_{n=1}^{\infty} (K \cap J_n) \neq \emptyset$                                    |
| There exists $(y_n) \subset K$ with $y = \lim y_n$ .                                      | $\exists x \in K$ s.t. $x \in J_n$ for all $n$                                          |
| Assume $y \notin K$ Let $x \in K$ and $O_x = V_{\varepsilon}(x)$                          | $x \in O_i$ for $i \in I$ and $\varepsilon > 0$ s.t. $V_{\varepsilon}(x) \subseteq O_i$ |
| $arepsilon = rac{1}{2} x-y $                                                             | $\exists N \in \mathbb{N} \text{ s.t.length } (J_N) < \varepsilon$                      |
| $\operatorname{Set} O_x$ open cover $K$                                                   | Hence $K \cap J_N \subseteq V_{\varepsilon}(x) \subseteq O_i$ contradiction.            |
| $\exists x_1, \dots, x_2 \in K \text{ s.t. } K \subseteq O_{x_1} \cup \dots \cup O_{x_n}$ |                                                                                         |
| Pick $N \in \mathbb{N}$ s.t. $ y_N - y  < \min\{\frac{1}{2} x_i - y  : i = 1,, n\}$       |                                                                                         |
| Hence $y_n \notin O_{x_1} \cup \ldots \cup O_{x_n}$ contradiction                         |                                                                                         |

**Heine Borel theorem:** Let  $K \subseteq \mathbb{R}$  then following statements equivalent:

- (1) K is compact
- (2) K is closed and bounded.
- (3) Any open cover K has a finite subcover.

# Example:

1: Possible open covers for A = (0, 1):  $O_1 = \mathbb{R}$   $O_1 = (0, 1)$   $O_1 = (0, \frac{1}{2}) \text{ and } O_2 = (\frac{1}{3}, 5)$   $O_2 = (-\frac{n}{10}, \frac{n}{10}), n \in \mathbb{N}$ . Has a finite subcover!  $O_a = (\frac{1}{a}, 2), a \ge 1$  does not have a finite subcover! 2: Every finite set is compact: Let  $K = \{a_1, a_2, \dots, a_p\}$ Let  $O_i$  where  $i \in I$  be an open cover for KThere exists  $i_1, \dots, i_p \in I$  s.t.  $a_k \in O_{i_k}$ Therefore  $K \subset O_{i_1} \cup \dots \cup O_{i_p}$ 

LIMIT POINT: c is a limit point of A where  $f : A \to \mathbb{R}$  when:

$$\lim_{x \to c} f(x) = L \text{ when: } \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } \begin{cases} 0 < |x - c| < \delta \\ x \in A \end{cases} \Rightarrow |f(x) - L| < \varepsilon$$

Note: f need not be defined at cNote: type definition:  $\varepsilon, \delta$  definition.

# SEQUENTIAL CHARACTERIZATION:

Let  $f : A \to \mathbb{R}$  and c a limit point of A the following statements are equivalent: (1)  $\lim_{x \to c} f(x) = L$ (2)  $\lim_{x \to c} f(x_n) = L$  for all  $(x_n) \subset A$  with  $x_n \neq c$  and  $\lim_{x \to c} x_n = c$ (3)  $\lim_{x \to c} f(x)$  does not exist if there exist  $(x_n), (y_n) \subseteq A$  s.t. (a)  $x_n \neq c$  and  $y_n \neq c$ (b)  $\lim_{x \to c} x_n = \lim_{x \to c} y_n = c$ (c)  $\lim_{x \to c} f(x_n) \neq \lim_{x \to c} f(y_n)$ 

# Example:

1:  $\lim_{x \to 2} \frac{x^2 + x - 6}{5x - 10} = 1$ Let  $\varepsilon > 0$  be arbitrary and set  $\delta = 5\varepsilon$ If  $0 < |x - 2| < \delta$ , then:  $\left|\frac{x^2 + x - 6}{5x - 10} - 1\right| = \left|\frac{(x + 3)(x - 2)}{5(x - 2)} - 1\right| = \left|\frac{x + 3}{5} - 1\right| = \frac{|x - 2|}{5} < \frac{5}{\delta} = \epsilon$ 2:  $\lim_{x \to c} \sqrt{x} = \sqrt{c} \text{ for } c > 0$   $\left|\sqrt{x} - \sqrt{c}\right| = \left|\frac{x - c}{\sqrt{x} + \sqrt{c}}\right| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}}$ With  $\varepsilon > 0$  and  $\delta = \sqrt{c} \cdot \varepsilon$  the definition is satisfied. So,  $\left|\sqrt{x} - \sqrt{c}\right| \le \frac{|x - c|}{\sqrt{c}}$ 3:  $\lim_{x \to 0} f(x) \text{ does not exist for:}$   $f(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \notin \mathbb{Q} \end{cases}$  and take  $x_n = \frac{1}{n}$  and  $y_n = \frac{\sqrt{2}}{n}$  then it satify:  $\lim x_n = \lim y_n = 0$   $\lim f(x_n) = 1 \text{ and } \lim f(y_n) = 0$  so the limit does not exist.

# Algebraic porperties:

Let  $f, g: A \to \mathbb{R}, c$  a limit point of A and  $\lim_{x \to c} f(x) = L$  and  $\lim_{x \to c} g(x) = M$  Then:

| Algebraic property                                    | condition          | Algebraic property                   |
|-------------------------------------------------------|--------------------|--------------------------------------|
| (1) $\lim_{x \to c} kf(x) = kL$                       | $k \in \mathbb{R}$ | $\lim_{x \to c} f(x) + g(x) = L + M$ |
| $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{L}{M}$ | $M \neq 0$         | $\lim_{x \to \infty} f(x)g(x) = LM$  |
| $x \rightarrow c g(x) = M$                            |                    | $x \rightarrow c$                    |

CONTINOUS function  $f: A \to \mathbb{R}$  if  $\forall \varepsilon > 0$  there  $\exists \delta > 0$  s.t.  $\begin{cases} |x-c| < \delta \\ x \in A \end{cases} \Rightarrow |f(x) - f(c)| < \varepsilon$ 

# Notes:

(1) f(c) needs to be defined

(2) c need not to be a limit point of A

(3)  $\delta$  may depend on  $\epsilon \& c$ 

(4) type of definition =  $\varepsilon, \delta$  definition.

# Example:

1: If  $c \in A$  is isolated then  $f : A \to \mathbb{R}$  is continuous at cLet  $\varepsilon > 0$  Take  $\delta > 0$  s.t.  $V_{\delta}(c) \cap A = \{c\}$ , then:  $|x-c| < \delta$  and  $x \in A \Rightarrow x \in V_{\delta}(c) \cap A$  $\Rightarrow x = c \Rightarrow f(x) = f(c) \Rightarrow |f(x) - f(c)| = 0 \le \varepsilon$ 2:  $f(x) = x^2$  is continuous at every  $c \in \mathbb{R}$ For |x - c| < 1 we have |x| < |c| + 1 and  $|f(x) - f(c)| = |x^2 - c^2| = |x + c||x - c| \le (|x| + |c|)|x - c| < (2|c| + 1)|x - c|$ For a given  $\varepsilon > 0$  take  $\delta = \min\{1, \frac{\varepsilon}{2|c|+1}\}$ 3: f(x) = |x| is continuous at every  $c \in \mathbb{R}$ For al  $x, c \in \mathbb{R}$  we have:  $|f(x) - f(c)| = ||x| - |c|| \le |x - c|$ For a given  $\varepsilon > 0$  take  $\delta = \varepsilon$  $\delta$  independent of c here because constant slope (-1 or 1).

# sequential characterization:

 $f: A \to \mathbb{R}$  and  $c \in A$  Then following statements equivalent. (1) f continuous @c(2)  $(x_n) \subseteq A$  and  $\lim x_n = c \Rightarrow \lim f(x_n) = f(c)$ (3) c limit point of A then 1& 2 also equivalent with  $\lim_{x \to c} f(x) = f(c)$ 

 $f: A \to \mathbb{R}$  and  $c \in A$  limit point. f not continuous @x = c if there exists  $(x_n) \subseteq A$  s.t.  $x_n \neq c$   $\lim x_n = c$   $\lim f(x_n) \neq f(c)$ 

### Example:

there exists no number  $a \in \mathbb{R}$  that makes:  $f(x) = \begin{cases} \sin \frac{1}{x} \text{ if } x \neq 0 \\ a \text{ if } x = 0 \end{cases} \quad \text{continuous at } x = 0$ (-) if  $a \neq 0$ , then with  $x_n = \frac{1}{n\pi}$  we have:  $\lim x_n = 0$  but  $\lim f(x_n) = 0 \neq a = f(0)$ (-) if a = 0 then with  $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$  we have  $\lim x_n = 0$  but  $\lim f(x_n) = 1 \neq a = f(0)$ 

# **Dirichlet's function:**

| Dirichlet's function                                                                  | Modified dirichlet's function.                                                                      |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $q(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q} \\ x \in \mathbb{Q} \end{cases}$ | $h(x) = \begin{cases} x \text{ if } x \in \mathbb{Q} \\ x \text{ if } x \in \mathbb{Q} \end{cases}$ |
| $\bigcup_{x \in \mathcal{A}} (0 \text{ if } x \notin \mathbb{Q})$                     | $0 \text{ if } x \notin \mathbb{Q}$                                                                 |
| Nowhere continuous                                                                    | Only continuous at $x = 0$                                                                          |
| Proof                                                                                 | Proof                                                                                               |
| Take $x_n = c + \frac{\sqrt{2}}{n}$ so $x_n \notin \mathbb{Q}$                        | Continuity follows from $ h(x)  \leq  x $ by:                                                       |
| Then $\lim x_n = c$ but $\lim g(x_n) = 0 \neq g(c)$                                   | $1.\lim x_n = 0 \Rightarrow \lim h(x_n) = 0$                                                        |
| Proof of discontinuity at $c \in \mathbb{R} \setminus \mathbb{Q}$                     | $\mathrm{or}arepsilon,\delta\mathrm{definition}$                                                    |
| Take $x_n \in \mathbb{Q}$ s.t. $ x_n - c  < \frac{1}{n}, \forall n \in \mathbb{N}$    | Proof of discountinuity at $c \neq a$ as for dirichlet's function.                                  |
| Then $\lim x_n = c$                                                                   |                                                                                                     |
| But $\lim g(x_n) = 1 \neq g(c)$                                                       |                                                                                                     |

# Thomae's function:

$$\begin{split} t(x) &= \begin{cases} 1 & \text{if } x = 0 \\ \frac{1}{n} & \text{if } x = m/n \in \mathbb{Q} \setminus \{0\} \text{in lowest terms with } n > 0 \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} \\ \text{Discontinuous at each } c \in \mathbb{Q} \text{ but continuous at each } c \in \mathbb{R} \setminus \mathbb{Q} \\ \text{PROOF:} \\ \text{Discontinuity at } c \in \mathbb{Q} \\ \text{Take } x_n = c + \frac{\sqrt{2}}{n} \quad \text{Then } \lim x_n = c \quad \text{but } \lim t(x_n) = 0 \neq t(c) \\ \text{Proof of continuity at } c \in \mathbb{R} \setminus \mathbb{Q} \\ \text{Let } \varepsilon > 0 \text{ and } \text{pick } k \in \mathbb{N} \text{ with } \frac{1}{k} < \varepsilon \\ (c-1,c+1) \text{ contains finitely many } r \in \mathbb{Q} \text{ with denominator } \leq k \\ \text{Pick } 0 < \delta < 1 \text{ such that } (c-\delta,c+\delta) \text{ contains no rationals with denominator } \leq k \text{ then: } \\ |x-c| < \delta \Rightarrow |t(x) - t(c)| = |t(x)| = t(x) < \frac{1}{k} < \varepsilon \end{split}$$

**Theorem:**  $f : A \to \mathbb{R}$  continuous and  $K \subseteq A$  compact  $\Rightarrow f(K)$  compact.

Proof:

Let  $(y_n) \subseteq f(K)$  arbitraru.

 $\exists (x_n) \subseteq K \text{ s.t. } y_n = f(x_n) \text{ for all } n$ 

 $K \text{ compact} \Rightarrow \text{ some subsequence } x_{n_k} \to x \in K$  $f \text{ continuous} \Rightarrow y_{n_k} = f(x_{n_k}) \to f(x) \in F(K)$ 

WARNING: false for pre-images:  $f^{-1}(K) = \{x \in A : f(x) \in K\}$ 

Counter example: f(x) = 0 for all  $x \in \mathbb{R}$ , so K any compact set containing 0, so  $f^{-1}(K) = \mathbb{R}$  is not compact.

# Theorem maxima and minima:

Let  $\,K\subset\mathbb{R}\,$  be compact and  $f:K\to\mathbb{R}\,$  continuous then  $f\,$  attains a maximum and a minimum on  $K\,$ 

PROOF:

MaximumMinimumExercise  $3.3.1 \Rightarrow s = \sup f(K)$  exists and  $s \in f(K)$ <br/>s = f(c) for some  $c \in K$ Exercise  $3.3.1 \Rightarrow i = \inf f(K)$  exists and  $i \in f(K)$ <br/>i = f(c) for some  $c \in K$ s is an upper bound for  $f(K) \Rightarrow f(x) \le s$  forall  $x \in K$ i is a lower bound for  $f(K) \Rightarrow f(x) \ge i$  for all  $x \in K$ 

Warning: without compactness previous theorem is false. Counterexample: f(x) = x no minimum on (0, 1] no maximum on [0, 1) neither a maximum nor a minimum on  $\mathbb{R}$ 

UNIFORM CONTINUOUS  $f : A \to \mathbb{R}$  on A if  $\forall \varepsilon > 0, \exists \delta > 0$  s.t.,  $\forall x, y \in A$ :  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$ 

Uniform means that  $\delta$  does not depend on x or y (but  $\delta$  may still depend on  $\varepsilon$ ) NOT UNIFORM CONTINUOUS:  $\exists \varepsilon_0 > 0 \text{ s.t. } \forall \delta > 0, \exists x, y \in A \text{ for which }, |x - y| < \delta, \text{but } |f(x) - f(y)| \ge \varepsilon_0$ 

**Theorem:**  $f: K \to \mathbb{R}$  continuous and K is compact, then f uniformly continous on K PROOF:

Let  $\varepsilon > 0$  be arbitrary.

For all  $c \in K$  there exists  $\delta_c > 0$  such that  $|x - c| < 2\delta_c \Rightarrow |f(x) - f(c)| < \frac{1}{2}\varepsilon$   $O_c = (c - \delta_c, c + \delta_c)$  with  $c \in K$ , form an open cover for K  $K \subset O_{c_1} \cup \ldots \cup O_{c_n}$  for some  $c_1, \ldots, c_n \in K$ Take  $x, y \in K$  with  $|x - y| < \delta = \min\{\delta_{c_1}, \ldots, \delta_{c_n}\}$   $|x - c_i| < \delta_{c_i}$  for some  $i = 1, \ldots, n$   $|f(x) - f(c_i)| < \frac{1}{2}\varepsilon$   $|c_i - y| \le |c_i - x| + |x - y| < \delta_{c_i} + \delta < 2\delta_{c_i}$   $|f(c_i) - f(y)| < \frac{1}{2}\varepsilon$ Apply triangle inequality with  $|f(x) - f(c_i)| < \frac{1}{2}\varepsilon$  and  $|f(c_i) - f(y)| < \frac{1}{2}\varepsilon$  $\Rightarrow |f(x) - f(y)| < \varepsilon$ 

### Examples:

### 1:

f(x) = ax + b is uniformly continuous on  $\mathbb{R}$ For  $x, y \in \mathbb{R}$  we have: 
$$\begin{split} |f(x)-f(y)| &= |(x+b)-(ay+b)| = |a||x-y|\\ \operatorname{Let} \varepsilon > 0 \ \text{and pick} \, \delta = \frac{\varepsilon}{|a|} \ \text{then for all} \, x,y \in \mathbb{R} \ \text{we have:} \end{split}$$
 $|x - y| < \delta \Rightarrow |f(x) - f(y)| < |a|\delta = \varepsilon$ When a = 0 we can choose any  $\delta$ 2:  $f(x) = x^2$  is uniformly continuous on [a, b]For  $x, y \in [a, b]$  we have:  $|f(x) - f(y)| = |x + y||x - y| \le (|x| + |y|)|x - y| \le 2M|x - y| \text{ where } M := \max\{|a|, |b|\}$ For  $\varepsilon > 0$  take  $\delta = \frac{\varepsilon}{2M}$  then for all  $x, y \in [a, b]$  we have:  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < 2M\delta = \varepsilon$ 3:  $f(x) = x^2$  is not uniformly continuous on  $\mathbb{R}$  $\begin{aligned} x_n &= n + \frac{1}{n} \text{ and } y_n = n \\ |x_n - y_n| &= \frac{1}{n} \to 0 \\ |f(x_n) &= f(y_n)| = 2 + \frac{1}{n^2} > 2 \text{ and } \forall n \in \mathbb{N} \end{aligned}$  $f(x) = \frac{1}{x}$  is uniform continuous on  $[a, \infty)$  for all a > 0For  $x, y \in [a, \infty)$  we have:  $\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right| = \frac{|x-y|}{xy} \le \frac{|x-y|}{a^2}$ For  $\varepsilon > 0$  take  $\delta = a^2 \varepsilon$  then for all  $x, y \in [a, \infty)$  we have  $|x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\delta}{a^2} = \varepsilon$ 5:  $f(x) = \frac{1}{x} \text{ is not unif. cont. on } (0, \infty)$  $x_n = \frac{1}{n+1} \text{ and } y_n = \frac{1}{n}$  $|x_n - y_n| \to 0$  $|f(x_n) - f(y_n)| = 1, \forall n \in \mathbb{N}$ 6.  $\sqrt{x}$  is uniformly continuous on  $[1,\infty)$ For  $x, y \ge 1$  we have: 
$$\begin{split} \left|\sqrt{x} - \sqrt{y}\right| &= \left|\frac{x-y}{\sqrt{x} + \sqrt{y}}\right| = \frac{|x-y|}{\sqrt{x} + \sqrt{y}} \leq \frac{|x-y|}{2}\\ \text{For given } \varepsilon > 0 \text{ take } \delta = 2\varepsilon \text{ to satisfy the definition.} \end{split}$$
7:

[0,1] is compact and  $f(x)=\sqrt{x}$  continuous on [0,1] gives the conclusion that f is continuous on [0,1]

# Intermediate value theorem:

 $\begin{array}{l} f:[a,b] \rightarrow \mathbb{R} \text{ continuous and } f(a) < L < f(b) \text{ or } f(a) > L > f(b) \text{ then } f(c) = L \text{ for some } c \in (a,b) \\ \text{Note: Without loss of generality we can assume} \\ (-) L = 0 \text{ otherwise replace } f(x) \text{ by } f(x) - L \\ (-) f(a) < 0 < f(b), \text{ otherwise replace } f(x) \text{ by } -f(x) \\ \text{PROOF:} \\ \exists I_n = [a_n, b_n] \text{ s.t. } f(a_n) < 0 \leq f(b_n) \text{ so } I_0 \supseteq I_1 \supseteq I_2 \supseteq \dots \text{ so } \text{Length}(I_n) = \frac{b-a}{2^n} \\ \text{So } \exists c \in [a, b] \text{ so } \exists c \in I_n = [a_n, b_n], \forall n \in \mathbb{N} \\ \text{Note that: } |a_n - c| \leq \text{Length}(I_n) \rightarrow 0 \mid |b_n - c| \leq \text{Length}(I_n) \rightarrow 0 \\ \text{So } c = \lim a_n = \lim b_n. \text{ Continuity of } f \text{ implies:} \\ f(c) = \lim f(a_n) = \lim f(b_n) \\ \text{We know } f(a_n) < 0, \text{and } \forall n \in \mathbb{N} \text{ so } f(c) \leq 0 \\ \text{We know } f(b_n) \geq 0, \text{and } \forall n \in \mathbb{N} \text{ so } f(c) \geq 0 \\ \text{Combine } f(c) \leq 0 \text{ and } f(c) \geq 0 \text{ we receive } f(c) = 0 \end{array}$ 

# Example:

1:  $p(x) = x^{5} - 2x^{3} - 2 \text{ has a zero on } (0, 2)$  p is continuous on [0, 2] p(0) = -2 < 0 and p(2) = 14 > 0  $IVT \Rightarrow p(c) = 0 \text{ for some } c \in (0, 2)$ 2: if  $f : [a, b] \rightarrow \mathbb{R}$  is continuous and  $f([a, b]) \subset [a, b]$ , then f(c) = c for some  $c \in [a, b]$ Assume  $f(a) \neq a$  and  $f(b) \neq b$  (Otherwise nothing to prove)  $f([a, b]) \subset [a, b] \Rightarrow f(a) > a, f(b) < b$  g(x) = f(x) - x is continuous and g(b) < 0 < g(a)  $IVT \Rightarrow g(c) = 0 \text{ for some } c \in (a, b)$ 

# Derivative

DERIVATIVE: limit of a difference quotient, denoted by f'(x)DIFFERENTIABLE  $f: I \to \mathbb{R}$  (where  $I \subseteq \mathbb{R}$ , interval)  $@c \in I$  if  $f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$  exists. **Theorem:**  $f: I \to \mathbb{R}$  differentiable at  $c \in I \Rightarrow f$  continuous at cPROOF:  $\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot (x - c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} [x - c] = f'(c) \cdot 0 = 0$ 

# Example:

1:  $f(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x \le 0 \end{cases} \text{ is not differentiable at } c = 0. \text{ Reason: } f \text{ is not continuous at } c = 0 \end{cases}$ 2: f(x) = |x| continuous but not differentiable at c = 0  $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} \text{ does not exist.}$ 3:  $f \text{ is differentiable at every } c \neq 0 \text{ and } f'(c) = \begin{cases} 1 \text{ if } c > 0\\ -1 \text{ if } c < 0 \end{cases} \text{ where } f(x) = |x|$ 4:  $f(x) = \frac{x}{1 + |x|} \Rightarrow f'(0) = 1$ We can not use the quotient rule, because derivative of |x| where x = 0, does not exist.  $\left| \frac{f(x) - f(0)}{x - 0} - 1 \right| = \left| \frac{1}{1 + |x|} - 1 \right| = \left| \frac{|x|}{1 + |x|} - 1 \right| = \frac{|x|}{1 + |x|} \le |x|$   $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 1, \text{ by } \varepsilon, \delta\text{-argument.}$ 

Remark: for  $c \neq 0$  we can compute f'(c) using calculus rules.

# Theorems:

| Name      | Theorem                                                           | Proof                                                                                     |                                     |
|-----------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|
| Interior  | Assume:                                                           | Maximum:                                                                                  | May be false for                    |
|           | $f(a,b) \to \mathbb{R}$ differentiable                            |                                                                                           |                                     |
| Extremum  | f attains a maximum                                               | $f(c) \ge f(x)$ for all $x \in (a, b)$                                                    | closed intervals:                   |
|           | or minimum at $c \in (a, b)$                                      |                                                                                           |                                     |
| theorem   | Then $f'(c) = 0$                                                  | $(x_n)\&(y_n)\in(a,b)$ s.t.                                                               | $f(x) = x \operatorname{on} [0, 1]$ |
|           |                                                                   | $x_n < c < y_n, \forall n \in \mathbb{N} \text{ and}$                                     | $\min@x = 0$                        |
|           |                                                                   | $\lim x_n = \lim y_n = c$                                                                 | , but f'(0) = 1                     |
|           |                                                                   | $f'(c) = \frac{f(x_n) - f(c)}{x_n - c} \ge 0$                                             | $\max@x = 1$                        |
|           |                                                                   | $f'(c) = \frac{f(y_n) - f(c)}{c} \le 0$                                                   | but $f'(1) = 1$                     |
|           |                                                                   | f'(c) = 0 by order limit theorem                                                          |                                     |
| Darboux's | If $f : [a, b] \to \mathbb{R}$ differentiable                     | f'(a) < 0 < f'(b)                                                                         | do not assume                       |
| Theorem   | f'(a) < L < f'(b)                                                 | (or replace $f(x)$ by $\pm (f(x) - Lx)$ )                                                 | f' continuous                       |
|           | or $f'(a) > L > f'(b)$                                            | $\exists s \in (a,b) \text{ s.t } f(s) < f(a)$                                            | •                                   |
|           | there exists $c \in (a, b)$                                       | Otherwise $f(x) \ge f(a) \forall x \in (a, b)$                                            |                                     |
|           | s.t. $f'(c) = L$                                                  | so $f'(a) = \lim \frac{f(x) - f(a)}{x} \ge 0$                                             |                                     |
|           |                                                                   | $x \rightarrow a$ $x - a$                                                                 |                                     |
|           |                                                                   | can do the same for $f(t) < f(b)$                                                         |                                     |
|           |                                                                   | [a, b] compact. f continuous                                                              |                                     |
|           |                                                                   | f minimum on $[a, b]$                                                                     |                                     |
|           |                                                                   | $f(s) < f(a) \& f(t) < f(b) \Rightarrow$                                                  |                                     |
|           |                                                                   | f minimum in $(a, b)$                                                                     |                                     |
|           |                                                                   | IET, $f'(c) = 0$ for some $c \in (a, b)$                                                  |                                     |
| Rolle's   | Assume that                                                       | f continuous and $[a, b]$ compact                                                         |                                     |
|           | $f:[a,b] ightarrow\mathbb{R}$                                     |                                                                                           |                                     |
| theorem   | and differentiable on $(a, b)$                                    | so $f$ attains max/min values.                                                            |                                     |
|           | f(a) = f(b)                                                       |                                                                                           |                                     |
|           | $\exists c \in (a, b) \text{ s.t. } f'(c) = 0$                    | f(a) = f(b) both max and min:                                                             |                                     |
|           |                                                                   | $f \operatorname{constant} \Rightarrow f'(x) = 0 \operatorname{for} \operatorname{all} x$ |                                     |
|           |                                                                   | take any $c \in (a, b)$                                                                   |                                     |
|           |                                                                   | otherwise by IET                                                                          |                                     |
| Mean      | $\operatorname{if}[a,b] \to \mathbb{R} \operatorname{continuous}$ | h(x) = f(x) - k(x)                                                                        |                                     |
| Value     | and $f$ differentiable on $(a, b)$                                | $k(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$                                          |                                     |
| Theorem   | $\exists c \in (a,b) \text{ s.t.}$                                | h(x) con. on $[a, b]$ and diff. on $(a, b)$                                               |                                     |
|           | $f'(c) = \frac{f(b) - f(a)}{b - a}$                               | h(a) = h(b) = 0                                                                           |                                     |
|           |                                                                   | $h'(c) = 0 \Rightarrow f'(c) = k'(c)$                                                     |                                     |
|           |                                                                   | $f'(c) = \frac{f(b) - f(a)}{b - a}$                                                       |                                     |

# Example:

$$\begin{split} f(x) &= \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} & \text{is NOT derivative.} \\ \text{Assume there exists } F : \mathbb{R} \to \mathbb{R} \text{ s.t. } F'(x) = f(x) \\ \text{Darboux} \Rightarrow f \text{ attains all values in } (0, 1) \\ \text{Contradiction!!} \end{cases} \end{split}$$

# Application to uniform continuity

# Example:

 $\begin{array}{l} f(x) = \arctan(x) \mbox{ is uniformly continuous on } \mathbb{R} \\ {\rm MVT} \Rightarrow \forall x,y \in \mathbb{R} \ , \exists c \in (x,y) \mbox{ s.t.}, \arctan(x) - \arctan(y) = \arctan'(c)(x-y) \\ \arctan(x) - \arctan(y) = \frac{1}{1+c^2}(x-y) \\ |\arctan(x) - \arctan(y)| \leq |x-y| \\ {\rm For } \varepsilon > 0 \ \mbox{ take } \delta = \varepsilon \ \mbox{ to satisfy the definition of uniformly continuity.} \end{array}$ 

# Pathologies:



Everywhere continuous, nowhere differentiable.

SEQUENCE OF FUNCTIONS:  $f_n : A \to \mathbb{R}$   $f_n$  POINTWISE CONVERGENCE: to  $f : A \to \mathbb{R}$  for all fixed  $x \in A$  when  $\lim f_n(x) = f(x)$ So for fixed  $x \in A$ :  $\forall \varepsilon > 0 \exists N_{\varepsilon,x} \in \mathbb{N}$  s.t.  $n \ge N_{\varepsilon,x} \Rightarrow |f_n(x) - f(x)| < \varepsilon$   $f_n$  UNIFORM CONVERGENCE: to  $f : A \to \mathbb{R}$  if:  $\forall \varepsilon > 0$ , there  $\exists N_{\varepsilon} \in \mathbb{N}$  s.t.  $n \ge N_{\varepsilon} \Rightarrow |f_n(x) - f(x)| < \varepsilon \forall x \in A$ Note: independent of  $x \in A$ 

# Familiar examples:



The classic example and the triangle inequality does not converge uniform, because we can find a value of  $\varepsilon$  for which the statement does not hold, but it must hold for all  $\varepsilon > 0$  to converge uniform.

### A useful characterization:

**Theorem:** consider  $f_n : A \to \mathbb{R}$  then:  $f_n \to f$  uniformly  $\Leftrightarrow \lim(\sup_{x \to A} |f_n(x) - f(x)|) = 0$ 

PROOF:

| $\Rightarrow$                                                                      | <del>4</del>                                                              |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| for $\varepsilon > 0$ there $\exists N_{\varepsilon} \in \mathbb{N}$ s.t.          | For $\varepsilon > 0$ there $\exists N_{\varepsilon} \in \mathbb{N}$ s.t. |
| $n \ge N_{\varepsilon} \Rightarrow  f_n(x) - f(x)  < \varepsilon, \forall x \in A$ | $n \ge N_{\varepsilon} \Rightarrow \sup  f_n(x) - f(x)  < \varepsilon$    |
| $\operatorname{So}\sup_{x\in A} f_n(x) - f(x)  \le \varepsilon$                    | $\Rightarrow  f_n(x) - f(x)  < \varepsilon, \forall x \in A$              |

### Example:

1: On A = [0, 1] the sequence  $f_n(x) = x^n$ 2: The triangle sequence does not Does not converge uniformly to  $f(x) = \begin{cases} 0 \text{ if } x < 1\\ 1 \text{ if } x = 1 \end{cases}$ converge uniformly to zero since  $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} f_n(x) = 1$ Reason: for all  $n \in \mathbb{N}\,$  we have  $\sup |f_n(x) - f(x)| = \sup x^n = 1$  $x \in [0,1]$  $x \in [0,1]$ 3: 4:  $f_n(x) = \frac{x^2}{1+nx^2} \to 0$  $f_n(x) = (1-x)x^n \to 0$ uniformly on [0, 1]uniformly on  $A = \mathbb{R}$ Calculus method:  $f_n(x)$  maximum@ $x_n = \frac{n}{n+1}$  $\sup_{x \in [0,1]} |f_n(x) - 0| = f_n(x_n)$  $= \frac{1}{n+1} (\frac{n}{n+1})^n < \frac{1}{n+1} \to 0$ 

# **Preservation of continuity:**

Assume  $f_n : A \to \mathbb{R}$  satisfies: (1)  $f_n \to f$  uniformly on A (2)  $f_n$  is continuous at  $c \in A$  for all  $n \in \mathbb{N}$ Then f is continuous at cMoral: uniform convergence preserves continuity! PROOF: For, $\varepsilon > 0$  there exist:  $N \in \mathbb{N}$  s.t.  $|f_N(x) - f(x)| < \frac{1}{3}\varepsilon$ , for all  $x \in A$   $\delta > 0$  s.t.  $|x - c| < \delta \Rightarrow |f_N(x) - f_N(c)| < \frac{1}{3}\varepsilon$ If  $|x - c| < \delta$  then:  $|f(x) - f(c)| = |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) = f(c)|$  $\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| < \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon = \varepsilon$ 

# Example:

The sequence  $f_n(x) = x^n$  does NOT uniformly converge to:  $f(x) = \begin{cases} 0 \text{ if } x < 1\\ 1 \text{ of } x = 1 \end{cases}$  on the set A = [0, 1] because each  $f_n$  continuous at x = -1 but  $\lim f$  not.

CAUCHY CRITERION: Following statements equivalent: The following statements are equivalent: (1)  $f_n$  converges uniformly on A(2) for all  $\varepsilon > 0$  there exists  $N_{\varepsilon} \in \mathbb{N}$  s.t.  $n, m \ge N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \forall x \in A$ PROOF:

| $1 \rightarrow 2$                                                                           | $2 \rightarrow 1$                                                                                            |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| For all $\varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}$ s.t.                      | for all $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ s.t.:                                |
| $n \ge N_{\varepsilon} \Rightarrow  f_n(x) - f(x)  < \frac{\varepsilon}{2} \forall x \in A$ | $n,m \ge N_{\varepsilon} \Rightarrow  f_n(x) - f_m(x)  < \varepsilon, \forall x \in A$                       |
| $n, m \ge N_{\varepsilon} \Rightarrow  f_n(x) - f_m(x) $                                    | $\rightarrow f(x) := \lim f_n(x)$ , exists $\forall x \in A$                                                 |
| $=  f_n(x) - f(x) + f(x) - f_m(x) $                                                         | $n, m \ge N_{\varepsilon} \Rightarrow f_n(x) - \varepsilon < f_m(x) < f_n(x) + \varepsilon, \forall x \in A$ |
| $\leq  f_n(x) - f(x)  +  f(x) - f_m(x) $                                                    |                                                                                                              |
| $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \forall x\in A$                  | $n \ge N_{\varepsilon} \Rightarrow f_n(x) - \varepsilon \le f(x) \le f_n(x) + \varepsilon, \forall x \in A$  |
| $\overline{So}(2)$                                                                          | Where $m \to \infty$                                                                                         |
|                                                                                             | $n \ge N_{\varepsilon} \Rightarrow  f_n(x) - f(x)  < \varepsilon, \forall x \in A$                           |
|                                                                                             | So (1)                                                                                                       |

UNIFORM CONVERGENCE PRESERVE DIFFERENTIABILITY?

Counter example:  $f_n(x) = \sqrt{x^2 + \frac{1}{n}} \rightarrow |x|$  uniformly on [-1, 1]Every  $f_n$  is differentiable at x = 0, but the limit is NOT. **Lemma:** assume that: (1)  $f_n : [a, b] \to \mathbb{R}$  differentiable for all n(2)  $f'_n$  converges uniformly on [a, b] (note the prime) (3)  $f_n(x_0)$  converges for some  $x_0 \in [a, b]$ Then  $f_n$  converges uniformly on [a, b]**PROOF:** for each  $\varepsilon > 0$  there exists  $N_1, N_2 \in \mathbb{N}$  s.t.:  $n, m \ge N_1 \Rightarrow |f'_n(x) - f'_m(x)| < \frac{\varepsilon}{2(b-a)}, \forall x \in [a, b] \text{ and } n, m \ge N_2 \Rightarrow |f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$ Claim:  $n, m \ge \max\{N_1, N_2\} \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \forall x \in [a, b]$ PROOF OF CLAIM: Apply MVT to  $g = f_n - f_m$  $g(x) = g(x) - g(x_0) + g(x_0)$  $g(x) = g'(c)(x - x_0) + g(x_0) c$  between x and  $x_0$ Triangle inequality:  $|g(x)| \le |g'(c)| \cdot |x - x_0| + |g(x_0)| = |g'(c)| \cdot (b - a) + |g(x_0)|$  $\begin{aligned} |f_n(x) - f_m(x)| &\le |f'_n(c) - f'_m(c)| \cdot (b-a) + |f_n(x_0) - f_m(x_0)| \\ |f_n(x) - f_m(x)| &\le \frac{\varepsilon}{2(b-a)} \cdot (b-a) + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$ 

# Theorem: If:

1.  $f_n : [a, b] \to \mathbb{R}$  differentiable for all n2.  $f'_n \to g$  uniformly on [a, b]3.  $f_n(x_0)$  converges for some  $x_0 \in [a, b]$ Then there exists a differentiable  $f : [a, b] \to \mathbb{R}$  s.t.  $f_n \to f$  uniformly and f' = gMoral:  $(\lim f_n)' = \lim(f'_n)$ 

Proof:

### Theorem at the top of this page:

| Lemma gives $f_n \to f$ uniformly | Let $c \in [a, b]$ and $\varepsilon > 0$ be arbitrary                                                       |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|
| on $[a, b]$ for some $f$          | To prove: there exists $\delta > 0$ s.t.                                                                    |
|                                   | $\left  0 <  x-c  < \delta \Rightarrow \left  \frac{f(x) - f(c)}{x-c} - g(c) \right  < \varepsilon \right $ |
| Part 1a                           | Part 1b                                                                                                     |

# Proof part 1b:

By using the triangle inequality we find the following 3 parts:  $\exists N \in \mathbb{N} \text{ and } \delta > 0 \text{ s.t.}$ :

| Part | statement                                                                                                          | Proof                                                                                                                      |
|------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 2a   | $\left \frac{f(x)-f(c)}{x-c} - \frac{f_n(x)-f_n(c)}{x-c}\right  < \frac{\varepsilon}{3}$                           | $\frac{ (f_m(x) - f_n(x)) - (f_m(c) - f_n(c)) }{x - c} =  f'_m(\alpha) - f'_n(\alpha) $                                    |
|      |                                                                                                                    | $\exists N_1 \in \mathbb{N} \text{ s.t.}$                                                                                  |
|      |                                                                                                                    | $n, m \ge N_1 \Rightarrow  f'_m(x) - f'_n(x)  < \frac{\varepsilon}{3} \forall x \in [a, b]$                                |
|      |                                                                                                                    | Order limit theorem with $m \to \infty$                                                                                    |
|      |                                                                                                                    | $n \ge N_1 \Rightarrow \left  \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right  \le \frac{\varepsilon}{3}$ |
| 2b   | $ f'_n(c) - g(c)  < \frac{\varepsilon}{3}$                                                                         | $n \ge N_2 \Rightarrow  f'_n(c) - g(c)  < \frac{\varepsilon}{3}$                                                           |
| 2c   | $\left  \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right  < \frac{\varepsilon}{3} \text{ for } 0 <  x - c  < \delta$ | fix $n = \max\{N_1, N_2\}$ and $\delta > 0$ s.t.                                                                           |
|      |                                                                                                                    | $0 <  x - c  < \delta \Rightarrow \left  \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right  < \frac{\varepsilon}{3}$          |

Because we proved statement 2a,2b and 2c, we can say that statement 1b is true, we know that 1a is true (because a direct conclusion from a lemma), and therefore the theorem is true. SERIES OF FUNCTIONS: Let  $f_n : A \to \mathbb{R}$  and  $s_n = f_1 + \ldots + f_n$  then:

- (-)  $\sum_{n=1}^{\infty} f_n \to f$  pointwise means  $s_n \to f$  pointwise. ()  $\sum_{n=1}^{\infty} f_n \to f$  arriform la mean  $s_n \to f$  arriform la
- (-)  $\sum_{n=1}^{\infty} f_n \to f$  uniformly means  $s_n \to f$  uniformly.

 $\ensuremath{\mathsf{CAUCHY}}$  CRITERION: the following statements are equivalent:

(1)  $\sum_{n=1}^{\infty} f_n$  converges uniformly on A(2) for all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  s.t.  $n > m \ge N \Rightarrow |f_{m+1}(x) + \ldots + f_n(x)| < \varepsilon$  for all  $x \in A$ PROOF: Follows from:  $|s_m(x) - s_n(x)| = |f_{m+1}(x) + \ldots + f_n(x)|$  WEIERSTRASS TEST: assume that:

(1)  $|f_n(x)| \leq C_n$  for all  $x \in A$ (2)  $\sum_{n=1}^{\infty} C_n$  converges. Then  $\sum_{n=1}^{\infty} f_n$  converges uniformly on APROOF: for all  $x \in A$  we have:  $|s_n(x) - s_m(x)| = |f_{m+1}(x) + \ldots + f_n(x)| \leq C_{m+1} + \ldots + C_n$ Cauchy criterion for  $\sum_{n=1}^{\infty} C_n \Rightarrow$  Cauchy criterion for  $s_n$ PRESERVATION OF CONTINUITY: assume: (1)  $\sum_{n=1}^{\infty} f_n \to f$  uniformly on A(2)  $f_N$  is continuous on A for all nThen f is continuous on A for all nPROOF:  $s_n = f_1 + \ldots + f_n$  is continuous on A for all  $n \in \mathbb{N}$   $s_n \to f$  uniformly  $\to f$  is continuous on APRESERVATION OF DIFFERENTIABILITY: Assume: (1)  $f_n : [a, b] \to \mathbb{R}$  is differentiable for all n(2)  $\sum_{n=1}^{\infty} f'_n \to g$  uniformly on [a, b](3)  $\sum_{n=1}^{\infty} f_n(x_0)$  converges for some  $x_0 \in [a, b]$ 

Then there exists a differentiable  $f:[a,b] \to \mathbb{R}$  s.t.  $\sum_{n=1}^{\infty} f_n \to f$  uniformly and  $f' = \sum_{n=1}^{\infty} f'_n$ 

### Example:

1:

Same graphs as before: Claim:  $f_n(x)$ ;  $= \frac{1}{2^n}h(2^nx) \Rightarrow |f_n(x)| \le \frac{1}{2^n}$  for all  $x \in \mathbb{R}$   $\sum_{n=0}^{\infty} \frac{1}{2^n}$  converges. Weierstrass test  $\Rightarrow \sum_{n=0}^{\infty} f_n$  converges uniformly on  $\mathbb{R}$   $f_n$  continuous on  $\mathbb{R}$  for all  $n \in \mathbb{N} \Rightarrow f$  continuous on  $\mathbb{R}$  **2:**  $f(x) = \sum_{n=0}^{\infty} \frac{\sin(2^nx)}{3^n}$  is differentiable on every [-c, c]  $(-) f_n(x) = \sin(2^nx)/3^n$  is differentiable for  $n \in \mathbb{N}$   $(-) |f'_n(x)| \le (\frac{2}{3})^n, \forall x \in [-c, c]$ Weierstrass  $\Rightarrow \sum_{n=1}^{\infty} f'_n(x)$  converges uniformly on [-c, c] $(-) \sum_{n=1}^{\infty} f_n(x)$  converges at x = 0 Apply term-wise differentiability Theorem.

Power series general form:  $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$ Pointwise convergence thm:  $\sum_{n=0}^{\infty} a_n x^n$  converges at  $c \neq 0 \Rightarrow \sum_{n=0}^{\infty} |a_n x^n|$  converges for |x| < |c|PROOF:  $\sum_{n=0}^{\infty} a_n c^n \text{ converges} \Rightarrow \lim a_n c^n = 0$  $\Rightarrow (a_n c^n)$  is bounded.  $\Rightarrow \exists M > 0 \text{ s.t. } |a_n c^n| \le M, \forall n \in \mathbb{N} \\ |a_n x^n| = |a_n (c \cdot \frac{x}{c})^n| = |a_n c^n| \cdot \left|\frac{x}{c}\right|^n \le M \cdot \left|\frac{x}{c}\right|^n, \forall n \in \mathbb{N} \\ \text{Note } |x| < |c| \Rightarrow \left|\frac{x}{c}\right| < 1$ Therefore we see that  $|a_n x^n| \leq M$ So Apply comparison test  $\sum_{n=0}^{\infty} M \left| \frac{x}{c} \right|^n \text{ converges} \Rightarrow \sum_{n=0}^{\infty} |a_n x^n| \text{ converges.}$ RADIUS OF CONVERGENCE: R when  $R \ge 0$ (-)  $|x| < R \Rightarrow PS$  converges at x (-)  $|x| > R \Rightarrow PS$  diverges at x Computing the radius. (-) ROOT TEST:  $L = \lim \sqrt[n]{|a_n|}$  exists then  $R = \frac{1}{L}$ (-) RATIO TEST:  $L = \lim \left| \frac{a_{n+1}}{a_n} \right|$  exists, then  $R = \frac{1}{L}$ (-) L = 0? then  $R = \infty$ PROOF:  $\lim \sqrt[n]{|a_n x^n|} = L|x|, \forall x \in \mathbb{R} \text{ fixed.}$ For all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  s.t.  $n \ge N \Rightarrow \left| \sqrt[n]{|a_n x^n|} - L|x| \right| < \varepsilon$ 

### Example:

| Root test:                                                            | Ratio test:                                                                 |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\sum_{n=0}^{\infty} \frac{x^n}{5^{n^2}}$ Radius of convergence:      | $\sum_{n=1}^{\infty} rac{x^n}{n^2}$                                        |
| $a_n = \frac{1}{5^{n^2}} \Rightarrow \sqrt[n]{ a_n } = \frac{1}{5^n}$ | $a_n = \frac{1}{n^2} \Rightarrow \frac{a_{n+1}}{a_n} = \frac{n^2}{(n+1)^2}$ |
| $\Rightarrow L = 0$                                                   | L = 1                                                                       |
| $\Rightarrow R = \infty$                                              | R = 1                                                                       |
| $\Rightarrow x < R$                                                   | converges for value in closed interval $[-1, 1]$                            |
| $\Rightarrow$ PS converges.                                           |                                                                             |

term 1b 2020-2021

Page 38

# Theorems:

BEWARE OF THE BOUNDARY POINTS:

ExampleRadiusat x = -Rat x = R $\sum_{n=1}^{\infty} x^n$ R = 1divergentdivergent. $\sum_{n=1}^{\infty} \frac{1}{n} x^n$ R = 1convergentdivergent $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ R = 1divergentconvergent. $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ R = 1convergentconvergent

**Theorem uniform convergence:**  $\sum_{n=0}^{\infty} |a_n c^n|$  convergent  $\Rightarrow \sum_{n=0}^{\infty} a_n x^n$  uniformly convergent on [-|c|, |c|]**PROOF:** From  $|x| \leq |c|$  we have:  $|a_n x^n| = |a_n| \cdot |x|^n \leq |a_n| \cdot |c|^n = |a_n c^n| =: M_n$ Apply Weierstrass' test:  $\sum_{n=0}^{\infty} M_n$  convergent  $\Rightarrow \sum_{n=0}^{\infty} a_n x^n$  uniformly convergent on [-|c|, |c|]Continuity of the limit: Corollary:  $\sum_{n=1}^{\infty} a_n x^n$  continuous function on (-R, R) PROOF: Take  $x_0 \in$ (-R, R) and  $|x_0| < c < d < R$  then: PS convergent at  $d \Rightarrow$ PS absolutely convergent at c $\Rightarrow \mathrm{PS}$  uniformly convergent on  $[-c,c] \Rightarrow \mathrm{PS}$  continuous on [-c,c]Each  $a_n x^n$  is continuous!  $\Rightarrow$  PS continuous at  $x_0 \Rightarrow$  PS continuous on (-R, R)Continuity of the limit (2):  $\sum_{n=0}^{\infty} |a_n R^n| \text{ convergent} \Rightarrow \sum_{n=0}^{\infty} a_n x^n \text{ uniformly convergent on } [-R, R]$ In particular, the PS is continuous on [-R, R]What if convergence is conditional at X = R or x = -R**Lemma:** if  $s_n = u_1 + \ldots + u_n$  then:  $\sum_{k=1}^n u_k v_k = s_n v_{n+1} + \sum_{k=1}^n s_k (v_k - v_{k+1})$ **PROOF:** PROOF: Set  $s_0 = 0$  then:  $u_k v_k = (s_k - s_{k-1})v_k = s_k(v_k - v_{k+1}) + s_k v_{k+1} - s_{k-1}v_k, \forall k = 1, ..., n$ These last two terms are called the telescoping terms.  $\sum_{k=1}^n u_k v_k = s_n v_{n+1} + \sum_{k=1}^n s_k(v_k - v_{k+1})$  Abel's **Lemma:** Assume that  $(u_n)$  and  $(v_n)$  satisfy:  $(1) |u_1 + \ldots + y_n| \le C, \forall n \in \mathbb{N} \quad (2) \ 0 \le v_{n+1} \le v_n, \forall n \in \mathbb{N}$ Then  $\left|\sum_{k=1}^{n} u_k v_k\right| \le C v_1, \forall n \in \mathbb{N}$ PROOF:

$$s_{n} = u_{1} + \dots + u_{1} \operatorname{so} \left| \sum_{k=1}^{n} u_{k} v_{k} \right| = \left| s_{n} v_{n+1} + \sum_{k=1}^{n} s_{k} (v_{k} - v_{k+1}) \right|$$
$$\left| \sum_{k=1}^{n} u_{k} v_{k} \right| \le |s_{n}| v_{n+1} + \sum_{k=1}^{n} |s_{k}| (v_{k} - v_{k+1})$$
$$\left| \sum_{k=1}^{n} u_{k} v_{k} \right| \le C(v_{n+1} + \sum_{k=1}^{n} (v_{k} - v_{k+1})) = Cv_{1}$$

term 1b 2020-2021

Page 39

### Abel's theorem:

- (1) PS converges at  $x = R \Rightarrow$  PS converges uniformly on [0, R]
- (2) PS converges at  $x = -R \Rightarrow$  PS converges uniformly on [-R, 0]PROOF: only part 1:

for all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  s.t.  $n > m \ge N \Rightarrow \left| \sum_{k=m+1}^{n} a_k R^k \right| < \varepsilon$ take any  $x \in [0, R]$  and set:  $v_k = (\frac{x}{R})^k$ , then:  $u_k = \begin{cases} a_k R^k & \text{if } k \ge m+1 \\ 0 & \text{otherwise} \end{cases}$ Abel's lemma  $\rightarrow$  Cauchy criterion:  $\left| \sum_{k=m+1}^{n} a_k x^k \right| = \left| \sum_{k=1}^{n} y_k v_k \right| < \varepsilon \cdot \frac{x}{R} \le \varepsilon \, \forall x \in [0, R]$  DIFFERENTIATION THEOREM:  $\sum_{n=0}^{\infty} a_n x^n \text{ convergent on } (-R, R) \Rightarrow \sum_{n=0}^{\infty} na_n x^{n-1} \text{ convergent on } (-R, R)$ PROOF:  $|c| < 1 \text{ then there exists } M > 0 \text{ s.t. } |nc^{-1}| \le M, \forall n \in \mathbb{N}$ Let |x| < t < R, then:  $|na_n x^{n-1}| = \frac{1}{t} (n |\frac{x}{t}|^{n-1}) |a_n t^n| \le \frac{M}{t} |a_n t^n|$ Apply comparison test. DIFFERENTIATION TERM BY TERM: For any PS with radius R we have:  $(\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=0}^{\infty} na_n x^{n-1}, \forall x \in (-R, R)$ PROOF: let  $0 \le c < R$  then:  $\sum_{n=0}^{\infty} na_n x^{n-1}$  converges uniformly on [-c, c] so  $\sum_{n=0}^{\infty} a_n x^n$  converges at x = 0Now apply Term-wise differentiability Theorem.

# Examples:

1: for all  $x \in (-1, 1)$  we have:  $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$  $\sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$ Taking  $x = \frac{1}{4}$  gives:  $\sum_{n=1}^{\infty} \frac{n}{4^n} = \frac{1}{4} \sum_{n=0}^{\infty} n(\frac{1}{4})^{n-1} = \frac{1}{4} \cdot \frac{1}{(1-\frac{1}{4})^2} = \frac{4}{9}$ 2: For all  $x \in (-1, 1)$  we have:  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n \to f(x)$  $\sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1} \to f'(x) = \frac{1}{1+x} \Rightarrow f(x) = \log|1+x| + C$ Note that (-) C = f(0) = 0 so  $f(x) = \log|1+x|$ (-) Abel's Theorem:  $\Rightarrow$  PS in the original equation uniformly on [0, 1] (=) Hence, PS in original equation is continuous at x = 1 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \lim_{x \to 1} f(x) = f(1) = \log(2)$ Conclusion:  $\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ 

TAYLOR SERIES of f around x = 0: given by:  $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ Partial sum:  $s_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^l$ REMAINDER:  $E_n(x) = f(x) - s_n(x)$ **Lemma:** *t* variable, *x* fixed. Assume that: (-) x > 0 and h(t) is n + 1 times differentiable on [0, x](-) h(x) = 0 and  $h^{(k)}(0) = 0$  for all k = 0, ..., nThen  $h^{(n+1)}(c) = 0$  for some  $c \in (0, x)$ **PROOF:** Repeated application Rolle's theorem:  $h(0) = h(x) \Rightarrow h'(c_1) = 0$  for some  $c_1 \in (0, x)$  $h'(0) = h'(c_1) \Rightarrow h''(c_2) = 0$  for some  $c_2 \in (0, c_1)$  $h^{(n)}(0) = h^{(n)}(c_n) \Rightarrow h^{(n+1)}(c_{n+1}) = 0$  for some  $c_{n+1} \in (0, c_n)$ Theorem: for  $n \in \mathbb{N}$  and x > 0, there exists  $c \in (0, x)$  s.t.:  $E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ Note: c depends on both n and x! **Proof**: Fix x > 0 and consider:  $h(t) = f(t) - s_n(t) - (\frac{f(x) - s_n(x)}{x^{n+1}})t^{n+1}$ note that h(x) = 0 and  $h^{(k)}(0) = 0$  for k = 0, ..., nPrevious lemma gives  $c \in (0, x)$  s.t.:  $f^{(n+1)}(c) - s_n^{(n+1)}(c) - (n+1)!(\frac{f(x) - s_n(x)}{x^{n+1}}) = 0$ We can claim that  $s_n^{(n+1)}(c) = 0$  $f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ TAYLOR SERIES of f around x = a:  $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ LAGRANGE REMAINDER: for x > a exists  $c \in (a, x)$  s.t.  $E_n(x) = f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ 

# Examples:

### Euler:

Taylor series for  $f(x) = e^x$ 



When we make a graph of these taylor series, we see that the taylor series approxiomate the sinfunction better for every higher value of n

# Natural logarithm:

 $f(x) = \ln(1+x) \Rightarrow f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n} \forall n \in \mathbb{N}$ For x > 0 exists  $c \in (0, x)$  s.t.:  $\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + \frac{(-1)^n}{(n+1)(1+c)^{n+1}} x^{n+1}$ **arctan**(**x**) On [-1, 1] we have  $\arctan(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots$ The convergence is uniform on [0, 1] but not on [-1, 0]For x = 1 we get  $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ **Counterexample:**  $f(x) = \begin{cases} e^{-\frac{1}{x^2}} \text{ if } x \neq 0 \\ 0 \text{ if } x = 0 \end{cases} \Rightarrow f^n(0) = 0 \forall n \in \mathbb{N}$ 

The Taylor series of f does not converge to f

# **Applications:**

 $\int_{0}^{1} \frac{e^{x}-1}{x} dx \approx 1.3179$ accoarding Wolfram Alpha. Approximating square roots by an example:  $\sqrt{x}$  centered at  $x = 1 \sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^{2} + E_{3}(x)$ This gives  $\sqrt{5} \approx 1$  which is not true. Centered at  $x = 2 \sqrt{x} = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^{2} + E_{3}(x)$ Then  $\sqrt{5}$  gives 2.234375, which is really close to the real value.

# Approximating integrals:

For x > 0 exists  $c \in (0, x)$  s.t.:  $e^x = \sum_{\substack{k=0 \ n}}^n \frac{x^k}{k!} + \frac{e^c}{(n+1)!} x^{n+1}$   $\frac{e^x - 1}{x} = \sum_{\substack{k=1 \ n}}^n \frac{x^{k-1}}{k!} + \frac{e^c}{(n+1)!} x^n$  $\int_0^1 \frac{e^x - 1}{x} dx = \sum_{\substack{k=1 \ n}}^n \frac{1}{k!k} + \int_0^1 \frac{e^c}{(n+1)!} x^n dx$ 

Upper bound Right part:  $R_n = \int_0^1 \frac{e^c}{(n+1)!} x^n dx$ 

$$\int_{0}^{1} \frac{e^{c}}{(n+1)!} x^{n} dx < \int_{0}^{1} \frac{3}{(n+1)!} x^{n} dx = \frac{3}{(n+1)!(n+1)!}$$

When we fill it in again we see that:  $\int_{0}^{1} \frac{e^{x}-1}{x} dx \approx \sum_{k=1}^{5} \frac{1}{k!k} = 1.31763... \text{ Where } (R_5 < 0.001)$ 

PARTITION: a partition of [a, b] is a set of the form:  $P = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\}$ REFINEMENTS: Q refinement of P if  $P \subseteq Q$  provided that P and Q partitions same interval.

Let  $f : [a, b] \to \mathbb{R}$  be bounded and P be a partition of [a, b] then: LOWER SUM of f w.r.t  $P: m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ Approximate area below graph of  $f \ L(f, P) = \sum_{k=1}^n m_k(x_k - x_{k-1})$ UPPER SUM of f w.r.t  $P: M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ Approximate area above graph of  $f \ U(f, P) = \sum_{k=1}^n M_k(x_k - x_{k-1})$ 



 $L(f, P) \leq U(f, P)$  for any partition P of [a, b]

Example:

 $\begin{array}{l} \textbf{1:} \\ P_1 = \{0, \frac{1}{4}, \frac{1}{2}, 1\} \text{ partition of } [0, 1] \\ P_2 = \{0, 1, 2\} \text{ NOT partition of } [0, 1] \\ P_3 = \{0, \frac{1}{2}\} \text{ NOT partition of } [0, 1] \\ \textbf{2:} \\ P = \{0, \frac{1}{2}, 1\} \text{ partition } [0, 1] \\ Q_1 = \{-, \frac{1}{4}, \frac{1}{2}, \frac{9}{10}, 1\} \text{ refines } P \\ Q_2 = \{0, \frac{1}{2}, 1, 2\} \text{ does not refine } P \text{ because } 2 \notin [0, 1] \end{array}$ 

# Relation upper and lower sums:

**Lemma:** if  $P \subseteq Q$  then: (-)  $L(f, P) \leq L(f, Q)$  and  $U(f, P) \geq U(f, Q)$ (-)  $U(f, Q) - L(f, Q) \leq U(f, P) - L(f, P)$  PROOF:



Only proof upper sum, lower soom works the samae way.

Refine P by adding one point  $z \in [x_{k-1}, x_k]$   $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$   $m'_k = \inf\{f(x) : x \in [z, x_k]\}$   $m''_k = \inf\{f(x) : x \in [x_{k-1}, z]\}$ We know that  $A \subset B$  then inf  $A \ge \inf B$   $m_k(x_k - x_{k-1}) = m_k(x_k - z) + m_k(z - xk - 1) \le m'_k(x_k - z) + m''_k(z - x_{k-1})$ Then proceed by induction Lemma: for any two partitions  $P_1$  and  $P_2$  we have:  $L(f, P_1) \le U(f, P_2)$ PROOF:  $Q = P_1 \cup P_2$  then  $P_1, P_2 \subset Q$ , so:  $L(f, P_1) \le L(f, Q) \le U(f, Q) \le U(f, P_2)$ 

# Best possible approximate area and riemann integral:

Assume  $f : [a, b] \to \mathbb{R}$  is bounded. Let  $\mathcal{P}$  denote the collections of all partitions fo [a, b] $U(f) = \inf\{U(f, P) : P \in \mathcal{P}\}$   $L(f) = \sup\{L(f, P) : P \in \mathcal{P}\}$ Lemma:  $L(f) \leq U(f)$ PROOF:  $L(f, P_1) \leq U(f, P_2)$  for all  $P_1, P_2 \in \mathcal{P}$  $L(f) \leq U(f, P_2)$  for all  $P_2 \in \mathcal{P}$ (take sup over  $P_1$ )  $L(f) \leq U(f)$  (Take inf over  $P_2$ )

RIEMANN INTEGRABLE: bounded function  $f : [a, b] \to \mathbb{R}$  and U(f) = L(f)Notation:  $\int_{a}^{b} f = U(f) = L(f)$  or  $\int_{a}^{b} f(x)dx = U(f) = L(f)$ 

# Integrability:

**Theorem:** The following statements are equivalent: (1) f is integrable. (2) or all  $\varepsilon > 0$  there exists a partition  $P_{\varepsilon}$  s.t.  $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ PROOF:  $(2) \Rightarrow (1)$  $\begin{array}{l} U(f) \leq U(f, P_{\varepsilon}) \\ L(f) \geq L(f, P_{\varepsilon}) \end{array} \} \Rightarrow U(f) - L(f) \leq U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ This holds for all  $\varepsilon > 0$  so U(f) = L(f) $(1) \Rightarrow (2)$ let  $\varepsilon > 0$  and choose  $P_1$  and  $P_2$  such that:  $L(f, P_1) > L(f) - \frac{1}{2}\varepsilon$  and  $U(f, P_2) < U(f) + \frac{1}{2}\varepsilon$ Because of the characterizations of infimum and supremium. Let  $P_{\varepsilon} = P_1 \cup P_2$  then:  $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) \le U(f, P_2) - L(f, P_1) = [U(f, P_2) - U(f)] + [L(f) - L(f, P_1)] < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$  $\operatorname{So} U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ **Continuous functions:** f continuous on  $[a, b] \Rightarrow f$  integrable on [a, b]**PROOF:** f is uniformly continuous on [a, b]For all  $\varepsilon > 0$  there exists  $\delta > 0$  s.t.  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}$  for all  $x, y \in [a, b]$ Let P be a partition such that  $x_k - x_{k-1} < \delta$  for all  $k = 1, \ldots, n$ There exists  $y_k, z_k \in [x_{k-1}, x_k]$  s.t.  $f(y_k) = M_k$  and  $f(z_k) = m_k$ Note:  $|y_k - z_k| < \delta \Rightarrow M_k - m_k = f(y_k) - f(z_k) < \frac{\varepsilon}{b-a}$  $U(f,P) - L(f,P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) < \frac{\varepsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1})$  $= \frac{\varepsilon}{b-a} \cdot (x_n - x_0) = \frac{\varepsilon}{b-a}(b-a) = \varepsilon$ So  $U(f,P) - L(f,P) < \varepsilon$  So integrable. Example:

# $$\begin{split} f(x) &= \begin{cases} 1 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases} \text{ is integrable on } [0,2] \\ \text{Let } 0 < \varepsilon < 1 \text{ and take the partition: } P &= \{0, 1 - \frac{1}{3}\varepsilon, 1 + \frac{1}{4}\varepsilon, 2\} \\ U(f,P) &= 2 \text{ and } L(f,P) = 2 - \frac{1}{2}\varepsilon \text{ so } U(f,P) - L(f,P) < \varepsilon \end{cases} \\ \begin{aligned} \mathbf{2}: \\ f(x) &= \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} \text{ is not integrable on } [0,1] \\ \text{Let } P \text{ be any partition of } [0,1] \text{ then:} \\ [x_k, x_{k-1}] \cap \mathbb{Q}^c \neq \emptyset \Rightarrow m_l = 0 \text{ for all } k = 1, \dots, n \Rightarrow L(f,P) = 0 \\ [x_k, x_{k-1}] \cap \mathbb{Q} \notin \emptyset \Rightarrow M_k = 1 \text{ for all } k - 1, \dots, n \Rightarrow U(f,P) = 1 \\ \text{So } L(f,P) \neq U(f,P) \text{ and therefore not differentiable.} \end{aligned} \\ \begin{aligned} \mathbf{3}: \\ f(x) &= \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} \text{ is NOT integrable on } [0,1] \\ \text{for any partition } P \text{ of } [0,1] \text{ we have: } U(f,P) - L(f,P) = \\ \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) = \sum_{k=1}^n x_k(x_k - x_{k-1}) > \sum_{k=1}^n \frac{1}{2}(x_k + x_{k-1})(x_k - x_{k-1}) = \sum_{k=1}^n \frac{1}{2}(x_k^2 - x_{k-1}^2) = \frac{1}{2} \end{cases} \end{aligned}$$

term 1b 2020-2021

Page 47

# **Increasing functions:**

Any increasing function  $f : [a, b] \to \mathbb{R}$  integrable. For any partition of [a, b] we have:  $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_k)$   $m_k = \inf\{f(x) : x \in [x_{k-1}, x_l]\} = f(x_{k-1})$ An equispaced partition P gives: EQUISPACED: Every interval has the same size.  $U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} [f(x_k) - f(x_{k-1})]$  $= \frac{(b-a)(f(b)-f(a))}{n} \to 0 \text{ as } n \to \infty$ 

### Example:



# Lecture 17:

SPLIT PROPERTY:  $f : [a, b] \to \mathbb{R}$  bounded and  $c \in (a, b)$  then f integrable on  $[a, b] \Leftrightarrow f$  integrable on [a, c] and [c, b]. In that case:  $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$ 

# Proof

Part 1: Let  $\varepsilon > 0$ , and pick a paritition P of [a, b] s.t.  $U(f, P) - L(f, P) < \varepsilon$ Let  $P_c = P \cup \{c\}$  then:  $U(f, P_c) - L(f, P_c) < \varepsilon$  $P_c\,$  is in fact the original partition where we add the point cThen  $Q = P_c \cap [a, c]$  is a partition of [a, c] and:  $\begin{array}{l} m := \# \text{intervals in } Q \\ n := \# \text{intervals in } P_c \\ m < n \text{ implies:} \end{array} \right\} \Rightarrow m < n$  $U(f,Q) - L(f,Q) = \sum_{k=1}^{m} (M_k - m_k)(x_k - x_{k-1}) \le \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = U(f,P_c) - L(f,P_c) < \varepsilon$ So  $U(f,P_c) - L(f,P_c) < \varepsilon$ , conclusion f integrable on [a,c]Part 2: Let  $P_1$  and  $P_2$  partititions of [a, c] and [c, b] s.t.:  $U(f, P_i) - L(f, P_i) < \frac{1}{2}\varepsilon$  for i = 1, 2Then  $P = P_1 \cup P_2$  is a partition of [a, b] and:  $U(f, P) = U(f, P_1) + U(f, P_2)$  $L(f, P) = L(f, P_1) + L(f, P_2)$  $\begin{array}{l} U(f,P)-L(f,P) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \\ \text{Conclusion:} \ f \ \text{ integrable on } [a,b] \end{array}$ **Part 3:** Let  $\varepsilon$  and  $P_1, P_2$  be as before:  $\int_{a}^{b} f \le U(f, P) < L(f, P) + \varepsilon = L(f, P_1) + L(f, P_2) + \varepsilon \le \int_{a}^{c} f + \int_{a}^{b} f + \varepsilon$ So we can claim:  $\int_{a}^{b} f \leq \int_{a}^{c} f + \int_{c}^{b} f$ Because:  $x \leq y + \varepsilon$ , for  $\varepsilon > 0$  then  $x \leq y$ Part 4: Let  $\varepsilon > 0$  and  $P_1, P_2$  be as before: Let  $\varepsilon > 0$  and  $P_1, P_2$  be as before:  $\int_a^c f + \int_c^b \le U(f, P_1) + U(f, P_2) < L(f, P_1) + f, P_2 + \varepsilon = L(f, P) + \varepsilon \le \int_a^b f + \varepsilon$ So we have  $\int_{a}^{c} f + \int_{c}^{b} \leq \int_{a}^{b} f$ And because we have:  $\int_{a}^{b} f \leq \int_{a}^{c} f + \int_{c}^{b} f$  And:  $\int_{a}^{c} f + \int_{c}^{b} \leq \int_{a}^{b} f$  we proved it.

# Integrable, algebraic properties and order properties:

f integrable on a closed interval [a,b]:  $\int_{-\infty}^{b} f = -\int_{-\infty}^{a} f$  and  $\int_{-\infty}^{c} f = 0$  for all  $c \in [a,b]$ Corollary: regardless order a, b, c we have:  $\int_{-\infty}^{b} f = \int_{-\infty}^{c} f + \int_{-\infty}^{b} f$ Algebraic properties: If f, g integrable on  $\begin{bmatrix} a \\ a, b \end{bmatrix}$  then: 1. f + g integrable and  $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$ 2. kf integrable and  $\int_{a}^{b} kf = k \int_{a}^{b} f$  for all  $k \in \mathbb{R}$ **Order properties:** (1) f integrable on [a, b] then  $m \le f(x) \le M \Rightarrow m(b-a) \le \int_{a}^{b} f \le M(b-a)$ (2) f, g integrable on [a, b] and  $f(x) \le g(x)$  for all  $x \in [a, b]$  then  $\int_{-b}^{b} f \le \int_{-b}^{b} g$ (3) f integrable on [a, b] then |f| integrable and  $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$ **PROOF:** (1) For all partitions of [a, b], we have  $L(f, P) \leq \int_{-\infty}^{b} f \leq U(f, P)$ Taking  $P = \{a, b\}$  gives:  $U(f, P) = (b - a) \cdot \sup\{f(x) : x \in [a, b]\} \le M(b - a)$  $L(f, P) = (b - a) \cdot \inf\{f(x) : x \in [a, b]\} \ge m(b - a)$ (2) Since  $0 \le g(x) - f(x)$  for all  $x \in [a, b]$  we have:  $0 \cdot (b - a) \le \int^{b} (g - f) \Rightarrow 0 \le \int^{b} g - \int^{b} f$ (3) P any partition of [a, b] and: 
$$\begin{split} & M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} & m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\} \\ & M'_k = \sup\{|f(x)| : x \in [x_{k-1}, x_k]\} & m'_k = \inf\{|f(x)| : x \in [x_{k-1}, x_k]\} \end{split}$$
Claim:  $M'_k - m'_k \le M_k - m_k$ For all  $\varepsilon > 0$  exists  $y, z \in [x_{k-1}, x_k]$  s.t. For all  $\varepsilon > 0$  calls  $y, z \in [-n, -k]$ ,  $M'_k - \frac{1}{2}\varepsilon < |f(y)|$   $m'_k + \frac{1}{2}\varepsilon > |f(z)|$   $M'_k - m'_k - \varepsilon < |f(y)| - |f(z)| \le |f(y) - f(z)| \le M_k - m_k \text{ so } M'_k - m'_k \le M_k - m_k$   $U(|f|, P) - L(|f|, P) = \sum_{k=1}^n (M'_k - m'_k)(x_k - x_{k-1}) \le \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) = U(f, P) - L(f, P) < \varepsilon$ 

$$-|f(x)| \le f(x) \le |f(x)| \Rightarrow -\int_{a}^{b} |f| \le \int_{a}^{b} f \le \int_{a}^{b} |f| \Rightarrow \left|\int_{a}^{b} f\right| \le \int_{a}^{b} |f|$$

# The fundamental theorem

# Part 1:

Assume that: (1) f is integrable on [a, b] (2) F differentiable on [a, b] and  $F'(x) = f(x), \forall x \in [a, b]$ Then  $\int_{a}^{b} f = F(b) - F(a)$ Part 2: Let f integrable on [a, b] and define:  $F(x) = \int_{a}^{x} F(t) dt$  where  $x \in [a, b]$ Then: (1) F uniformly continuous on [a, b](2) If f is continuous at c then F is differentiable at c and F'(c) = f(c)

# PROOF PART 1: f(a, b)

Let P be any partition of 
$$[a, b]$$
:  

$$F(b) - F(a) = \sum_{k=1}^{n} [F(x_k) - F(x_{k-1})]$$
Because:  $F(b) - F(a) = F(x_n) - F(0)$ 
MVT where  $t_k \in (x_{k-1}, x_k)$ :  

$$\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1}) < \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = U(f, P)$$

$$F(b) - F(A) \ge L(f, P)$$
 by similar proof, so we have:  

$$L(f, P) \le F(b) - F(a) \le U(f, P)$$
Taking sup/inf over all partitions gives:  

$$L(f) \le F(b) - F(a) \le U(f)$$
Since f integrable, it follows that:  

$$L(f) = U(f) = F(b) - F(a)$$

PROOF PART 2: Statement 1: since f integrable on [a, b] there exists M > 0 s.t.:  $|f(x)| \le M \forall x \in [a, b]$ We can not compute integrals of unbounded functions so that is the reason we can say that. If  $x, y \in [a, b]$  with  $x \ge y$  then:  $|F(x) - F(y)| = \left| \int_{y}^{x} f(t) dt \right| \le \int_{y}^{x} |f(t)| dt \le M |x - y|$ 

For given  $\varepsilon > 0$  take  $\delta = \frac{\varepsilon}{M}$  So therefore, *F* uniformly continuous on [a, b]Statement 2:

for  $x \neq c$  we have:

 $\frac{F(x)-F(c)}{x-c} - f(c) = \frac{1}{x-c} \int_{c}^{x} f(t)dt - f(c) = \frac{1}{x-c} \int_{c}^{x} f(t) - f(c)dt \operatorname{Let} \varepsilon > 0 \text{ be arbitrary and pick } \delta > 0 \text{ s.t.:}$  $|x-c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ Since  $|t-c| \le |x-c| < \delta$  it follows:  $\left|\frac{F(x)-F(c)}{x-c} - f(c)\right| = \frac{1}{|x-c|} \left|\int_{c}^{x} f(t) - f(c)dt\right| \le \frac{1}{|x-c|}|x-c| \cdot \varepsilon = \varepsilon$ 

So 
$$\left|\frac{F(x) - F(c)}{x - c} - f(c)\right| < \varepsilon$$