Some basis:

PROOF BY CONTRADICTION: proof opposite statement false, therefore original statement true.

Sets:

SET: collection of ELEMENTS: objects in a set.

 $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ all elements of A_2 also elements of A_1 and so on (so A_{n+1} elements of A_n)

Functions and real numbers:

 $A\&B$ are sets, *a*, *b* real numbers.

Definition 1.2.3: Functions:

FUNCTION: from A to B maps each element $x \in A$ with a single element of B Notation: $f : A \to B$ given $x \in A$ and expression $f(x)$ represents element B assiociate with x by f DOMAIN: A&RANGE: subset of B given by: $\{y \in B : y = f(x) \text{ for some } x \in A\}$

Theorem 1.2.6:

a, b equal iff for every real number $\varepsilon > 0$, it follows $|a - b| < \varepsilon$ PROOF: (1):If $a = b$ then $|a - b| < \varepsilon$ $|a - b| = 0$ and because $\varepsilon > 0$ we know $|a - b| < \varepsilon$ (2): If $|a - b| < \varepsilon$ then $a = b$ Assume $a \neq b$ so $\varepsilon_0 = |a - b| > 0$ must be true, which is the case because $\varepsilon > 0$ But $|a - b| < \varepsilon_0$ and $|a - b| = \varepsilon_0$ can not be both true. Therefore $a \neq b$ unacceptable $\Rightarrow a = b$

INDUCTION: If $S \subset \mathbb{N}$ with: $1 \in S$ $n \in \mathbb{N}$ and $n \in S$ $n+1 \in S$ then $S = \mathbb{N}$

Lecture 1:

Lemma and proof:

 $|x| = \max\{x, -x\}$ DEFINITION OF AN ABSOLUTE VALUE: $|x| = \begin{cases} x \text{ if } x \geq 0 \\ 0 \leq x \leq 1 \end{cases}$ $-x$ if $x < 0$ proof: $x > 0 \Rightarrow -x \leq 0 \Rightarrow -x \leq x \Rightarrow \max\{-x, x\} = x = |x|$ $x < 0 \Rightarrow -x > 0 \Rightarrow -x > x \Rightarrow \max -x, x = -x = |x|$

Algebraic properties:

Inequalities:

Upper bounds:

Lemma 1.3.8:

if s is an upper bound for A then: $s = \sup A \leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{s.t.} s - \varepsilon < a$ PROOF PART 1:

Lower bounds

Lemma 4:

if i is a lower bound for A then: $i = \inf A \leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{ s.t. } a < i + \varepsilon$ PROOF: Exercise 1.3.1

Maximum and minimum:

Definition 1.3.4 Maximum and minimum: real number a_0 maximum of set A if a_0 element of A and $a_0 \geq$ a for all $a\in A$

real number a_1 minimum of A if $a_1 \le a$ for all $a \in A$

Warning: $\sup(A)$ not always maximum A. For example $\sup\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\} = 1$ no largest element! $\inf(A)$ not always minimum A. For example $\inf\{1, \frac{1}{2}, \frac{1}{3}, \ldots\} = 0$, no smallest element.

The real line:

What is the difference between $\mathbb Q$ and $\mathbb R$?

What is the difference between $\mathbb Q$ and $\mathbb K$:
 $\mathbb Q$ has many gaps. Numbers like $\sqrt{2}, e, \pi$ are not in $\mathbb Q$

Example:

Do least upper bounds exist?

We used the definitions we saw in the first lecture for least upper bound and greatest lower bound.

Red: the set $A = \{x \in \mathbb{Q} : x \leq 2\}$ Blue: the upper bounds for A that are in \mathbb{Q} Is this subset bounded above? Therefore we use a new axiom.

Definitions:

AXIOM OF COMPLETENESS (AOC): Every nonempty set of $\mathbb R$ is bounded above has a least upper bound.

Theorem 1.4.2: ARCHIMENDEAN PROPERTY:

Consist 2 parts:

Nested Interval Property closed interval:

Theorem 1.4.1:

 $[a_1, b_1] \supseteq [a_2, b_2] \supseteq \ldots \rightarrow \bigcap_{n=1}^{\infty}$ $\bigcap_{n=1} [a_n, b_n] \neq \emptyset$ PROOF: We have to show that $\exists x \in \mathbb{R}$ s.t $x \in [a_n, b_n] \forall n \in \mathbb{N}$ Define $A = \{a_n : n \in \mathbb{N}\}\$

so we see that b_n upper bound a_n

AoC gives us: $x := \sup(A)$ exists.

 $a_n \leq x$ $\forall n \in \mathbb{N}$ Since $x =$ upper bound for A
 $x \leq b_n$ $\forall n \in \mathbb{N}$ Since $x =$ least upper bound of Since $x =$ least upper bound of A $x \in [a_n, b_n]$ $\forall n \in \mathbb{N}$

Nested Interval Property open interval:

The NIP does not work for open intervals: Example:

Proof that for $I_n = (0, \frac{1}{n})$ we have that $\bigcap_{n=1}^{\infty} I_n = \emptyset$

When $x \leq 0$ we have $x \notin I_n$ for all $n \in \mathbb{N}$ When $x > 0$ we have that $\exists k \in \mathbb{N}$ s.t. $\frac{1}{k} < x$ (by AP), And therefore, $\exists k \in \mathbb{N}$ s.t. $x \notin I_k$ So in both cases we have $x \notin \bigcap^{\infty}$ $\bigcap_{n=1}^{\infty} I_n$ so $\bigcap_{n=1}^{\infty} I_n = \emptyset$

Rational and Real numbers:

Theorem 1.4.3: $\forall a, b \in \mathbb{R}$ with $a < b$, $\exists r \in \mathbb{Q}$ s.t. $a < r < b$ PROOF: $(1) a < 0 < b$ then one nice r between it, namely the rational number 0 $(2) 0 \le a < b$ (works also for $b < a \le 0$, by working with $-a$ and $-b$) $\exists, n, m \in \mathbb{N}$ s.t. 1 $\frac{1}{n} < b - a$ $m-1 \leq na < m$ \mathcal{L} J $\Rightarrow m \le na + 1 < n(b - \frac{1}{n}) + 1 = nb$ $\overline{\text{Combine}}$ inequalities. $\begin{cases} na < m \\ m < mb \end{cases} \Rightarrow na < m < nb \Rightarrow a < \frac{m}{n} < b$ $\frac{m}{n} \in \mathbb{Q}$ so there exists indeed $r \in \mathbb{Q}$ s.t. $a < r < b$

Existence of square roots:

 $\exists \alpha \in \mathbb{R} \text{ s.t. } \alpha^2 = 2$ PROOF: define $A = \{t \in \mathbb{R} : t^2 \leq 2\}$ and $\alpha = \sup A$, then: $\alpha^2 < 2$ take $n \in \mathbb{N}$ with $\frac{1}{n} < \frac{2-\alpha^2}{2\alpha+1}$ $\alpha^2 > 2$ take $n \in \mathbb{N}$ with $\frac{1}{n} < \frac{\alpha^2}{2\alpha}$ So $(\alpha + \frac{1}{n})^2 = \alpha^2 + \frac{2\alpha}{\alpha} + \frac{1}{n^2} \leq \alpha^2 + \frac{2\alpha+1}{n} < 2$ $(\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{\alpha} + \frac{1}{n^2} > \alpha^2 - \frac{2\alpha}{n} > 2$ So $\alpha + \frac{1}{n} \in A$ so α not upper bound A Also contradiction, therefore, the theorem is true

1-1 CORRESPONDENCE: counting without counting by making sets.

Functions:

Definition:

FUNCTION: $f : A \to B$ maps each $a \in A$ with single element $b = f(a) \in B$. DOMAIN: $A\&R$ ANGE: $ran(f) = f(A) = \{f(a) : a \in A\} \&\text{CODOMAIN}: B$ Types: INJECTIVE (ONE-TO ONE) if $f(a) = f(b) \rightarrow a = b$ SURJECTIVE (ONTO) if $B = f(A)$ i.e. $\forall b \in B \exists a \in A$ s.t. $b = f(a)$ BIJECTIVE: if f injective and surjective (unique core respondence between elements of $A\&B$)

Allowed and not allowed.

Two elements in domain can correspond to 1 element in the codomain. All elements in the domain must correspond to some element in the codomain. An element in the domain can not correspond to more then 1 element in the codomain.

Cardinality:

Two sets same cardinality if there exists a bijective function: $f : A \rightarrow B$ Notation: $A \sim B$ So 1 to one correspondence, so equally many elements in both sets. If ∼ equivalence relation: $A \sim A$ $A \sim B \leftrightarrow B \sim A$ $A \sim B$ and $B \sim C \Rightarrow A \sim C$ PROOF: $(a, b) \sim (1, 1)$ condsider. $g: (a, b) \to (-1, 1)$ so $g(x) = \frac{2x-a-b}{b-a}$
Use $(a, b) \sim \mathbb{R}$ and $(-1, 1) \sim \mathbb{R}$ so $(a, b) \sim (-1, 1)$

Example:

1: $\mathbb{N} = \{1, 2, 3, \ldots\} \sim \mathbb{E} = \{2, 4, 6, \ldots\}$ A bijection is given by: $f : \mathbb{N} \to \mathbb{E}$ so: $f(n) = 2n$ Moral: there are "as many" even numbers as natural numbers.

2:

N ∼ Z A bijection (exercise) is given by: $f : \mathbb{N} \to \mathbb{Z}$ $f(n) = \begin{cases} (n-1)/2 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \end{cases}$ $-n/2$ if n is even Moral: there are "as many" integers as natural numbers!

3:

to prove that $(-1, 1) \sim \mathbb{R}$ consider: $f: (-1,1) \to \mathbb{R}$ and $f(x) = \frac{x}{1-x^2}$

 f is injective: $f(a) = f(b) \leftrightarrow a(1 - b^2) = b(1 - a)^2 \leftrightarrow a - b + a^2b - ab^2 = 0 \leftrightarrow (a - b)(ab + 1) = 0$ $(ab + 1)$ can not be zero (because of the domain) $\rightarrow a - b = 0 \rightarrow a = b$ Note: $a, b \in (-1, 1) \rightarrow ab \in (-1, 1)$

 f is surjective: $f(x) = r \leftrightarrow x = r(1 - x^2) \leftrightarrow rx^2 + x - r = 0$ is solvible for all $r \in \mathbb{R}$ Note: discriminant = $1 + 4r^2 > 0$ $x = \frac{-1 \pm \sqrt{1+4r^2}}{2r}$ These equation has 2 solutions. For any $r \in \mathbb{R}$ has unique solution $x \in (-1, 1)$ Hence f is bijective.

Countable set

COUNTABLE SET A if $A \sim S$ for some $S \subseteq \mathbb{N}$. Opposite: uncountable. Example is Z Lemma: When A conuntable \leftrightarrow , $\exists f : A \to \mathbb{N}$ injective. PROOF: PROOF PART 1 | PROOF PART 2 $S \subseteq \mathbb{N}$ $f : A \to S$ bijjective $S \circ f : A \to \mathbb{N}$ injective $S = \text{ran}(f)$ So $f : A\mathbb{N}$ injective $\vert f: A \to S$ bijective.

Lemma:

A countable \leftrightarrow g : $\mathbb{N} \rightarrow A$ surjective Proof:

Corollary:

 B contable $\left\{\begin{aligned}\right\} &\Rightarrow A$ countable. $\left\{\begin{aligned}\n & A \text{ countable} \\
 & g: A \to B \text{ surjective}\n \end{aligned}\right\} \Rightarrow B \text{ countable}.$ **Theorem:** A_n countable for all $n \in \mathbb{N} \to \bigcup_{n=1}^{\infty} A_n$ $\bigcup_{n=1} A_n$ countable.

Example:

1:

 $\mathbb{N} \times \mathbb{N} = \{(n, m) : n, m \in \mathbb{N}\}\$ is countable since: $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(n, m) = 2^n 3^m$ is injective. EXERCISE: find a bijective map $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ 2: A, B countable $\rightarrow A \cup B$ countable. Assume: $f : A \to \mathbb{N}$ and $g : B \to \mathbb{N}$ injective, and let: $h: A \cup \overline{B} \to \mathbb{N}$ $h(x) = \begin{cases} 2f(x) \text{ if } x \in A \\ 0 & \text{otherwise} \end{cases}$ $2g(x) + 1$ if $x \in B$ and $x \notin A$ This map h is injective. 3: $A_n = \{0, \pm \frac{1}{n}, \pm \frac{2}{n}, \ldots\}$ countable. Why? $\mathbb{Q} = \bigcup_{i=1}^{\infty}$ $\bigcup_{n=1} A_n$ is countable.

Uncountable sets

tangent line, sequence and neighborhood:

Newton's root finding method: Newton's root finding method

Where equation tangent line: $y = f'(x)(x - x_1) + f(x)$ and: Root of tangent line $x_2 := x_1 - \frac{f(x_1)}{f'(x_1)}$ Iternative proces $x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$ for $n = 1, 2, \ldots$

SEQUENCE: a function with domain $\mathbb N$ Can be written as infinte list of numbers: $\left(-\right) \left(1, \frac{1}{n}, \frac{1}{3}, \ldots\right)$ $\left(-\right) \left(\frac{n+1}{n}\right)_{n=1}^{\infty} = \left(\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \ldots\right) x_1 = 2 \text{ and } x_{n+1} = \frac{1}{2}(x_n+1)$

LIMIT OF A SEQUENCE: (a_n) converges to a if $\forall \varepsilon > 0$, there $\exists N \in \mathbb{N}$ s.t. $n \ge N \to |a_n - a| < \varepsilon$ Notation: $a = \lim a_n$ or $a_n \to a$. So a_n gets arbitrarily close to a as n grows larger.

NEIGHBORHOOD: (1) the set $V_{\varepsilon} = \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon)$ for $a \in \mathbb{R}$ —, and $\varepsilon > 0$ NEIGHBORHOOD: $(2) \forall \varepsilon > 0$, there $\exists N \in \mathbb{N}$ s.t. $n \geq N \to a_n \in V_{\varepsilon}(a)$ when a_n converges to a So the tail of the sequence get trapped in $V_{\varepsilon}(a)$

Example:

Limit and (di)convergence

STANDARD LIMITS:

DIVERGENT SEQUENCE: a sequence that does not converge. For example: $(a_n) = (-1, 1, -1, 1, \ldots)$ is divergent.

DEFINITION OF CONVERGENCE: $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ s.t. $n \geq N \rightarrow |a_n - a| < \varepsilon$ DEFINITION OF DIVERGENCE: $\exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \exists n \ge N \text{ s.t. } |a_n - a| \ge \varepsilon$ Proof:

Choose $\varepsilon = 1$ and $N \in \mathbb{N}$ arbitrary.

Case: $a \ge 0$ $n = 2N + 1 \rightarrow |a_n - a| = |-1 - a| - 1 + a \ge \varepsilon$ Case: $a < 0$ $n = 2N \rightarrow |a_n - a| = |1 - a| = 1 - a > \varepsilon$

Bounded Sequences:

BOUNDED SEQUENCE $(a_n): \text{if } \exists M > 0 \text{ s.t } |a_n| \leq M \forall n \in \mathbb{N}$

Theorem: (a_n) convergent $\rightarrow (a_n)$ bounded. Note: can be used to prove sequence diverges. PROOF: Let $a = \lim a_n$ then for $\varepsilon = 1$ exists $n \in \mathbb{N}$ s.t.: by triangle inequality: $n \ge N \to |a_n| - a < 1$ so $||a_n| - |a|| < 1$ so $|a_n| - |a| < 1$ so $|a_n| < 1 + |a|$ For $M = \max\{|a_1|, |a_n|, \ldots, |a_{N-1}|, 1 + |a|\}$ we have $|a_n| \leq M$ for all $n \in \mathbb{N}$ So (a_n) is convergent leads to (a_n) is bounded.

Examples:

1: $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$ is bounded (take $M = 1$) **2:** $(b_n) = (1, 4, 9, 16, 25, ...)$ is not bounded. **3:** $(a_n) = n^2$ diverges because it is not bounded. For $M = \max\{|a_1|, |a_n|, \ldots, |a_{N-1}|, 1 + |a|\}$ we have: $|a_n| \leq M$ for all $n \in \mathbb{N}$

Algebraic porperties:

Order properties:

 $\lim a_n = a \& \lim b_n = b$ then

Strict inequalities are not aways preserved.

 $\forall n \in \mathbb{N}^{\frac{1}{n}} > 0$ but $\lim_{n \to \infty} \frac{1}{n} = 0$

 $\forall n \in \mathbb{N}^{\frac{n}{n+1}} < 1$ but $\lim_{n+1}^n \frac{n}{n+1} = 1$

monotone sequence:

MONOTONE SEQUENCE a_n if it is $\begin{cases} \text{increasing: } a_n \leq a_{n+1} \forall n \in \mathbb{N} \\ \text{Decayian: } a_n > a_{n+1} \forall n \in \mathbb{N} \end{cases}$ Decreasing: $a_n \geq a_{n+1} \forall n \in \mathbb{N}$

 (a_n) bounded x monotone $\rightarrow (a_n)$ converges. PROOF: $A = \{a_n : n \in \mathbb{N}\}\$ bounded. (1) (a_n) increasing \rightarrow lim $a_n = \sup A$ Proof (CTD) assume (a_n) increases and let $s = \sup\{a_n : n \in \mathbb{N}\}\$ Let $\varepsilon > 0$ aribtrary $\rightarrow s - \varepsilon$ not upper bound. Exists $N \in \mathbb{N}$ s.t. $s = \varepsilon < a_n$. For $N \ge N$ we have: $s - \varepsilon < a_N \leq a_n \leq s \leq s_{\varepsilon} \to |a_n - s| < \varepsilon \text{ so } a_n \text{ converges.}$ (2) (a_n) decreasing \rightarrow lim $a_n =$ inf A (exercise!)

Examples:

1: $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$ and $(b_n) = (1, 1, 2, 2, 4, 4, \ldots)$ are monotone. **2:** $(c_n) = (1, 0, 1, 0, ...)$ is not monotone. 3: if $a_{n+1} = \sqrt{1 + a_n}$ with $a_1 = 1$ then (a_n) converges. (a) proof by induction that a_n is increasing. Base case: $a_1 = 1, a_2 =$ √ $2\,{\rm so}\,a_1 < a_2$ Induction step: Therefore surfact that $a_n < a_{n+1}$ for some n we have: $1 + a_n < 1 + a_{n+1} \rightarrow \sqrt{1 + a_n} < \sqrt{1 + a_{n+1}} \rightarrow a_{n+1} < a_{n+2}$ So $a_n < a_{n+1} < a_{n+2} < \ldots$ so increasing. (b) proof by induction that (a_n) is bounded. $a_1 = 1 \rightarrow a_1 < 2$ $a_1 = 1 \rightarrow a_1 < 2$
 $a_n < 2$ for some $n \rightarrow 1 + a_n < 3 \rightarrow \sqrt{1 + a_n} <$ √ $3 <$ √ $2 \to a_{n+1} < 2$ So a bounded sequence. (c) Find $\lim a_n$ By MCT, exists $a = \lim a_n a_{n+1}^2 = 1 + a_n$ so $\lim a_{n+1}^2 = \lim (1 + a_n) \Rightarrow a^2 = 1 + a \Rightarrow a = \frac{1 + \sqrt{5}}{2}$

Subsequences:

Pick $n_k \in \mathbb{N}$ s.t.: $1 \leq n_1 < n_2 < n_3 < \ldots$ If (a_n) is a sequence then: $(a_{n_k}) = (a_{n_1}, a_{n_2}, a_{n_3}, \ldots)$ is called A SUBSEQUENCE OF (a_n) Note: $n_k \geq k$ for all $k \in \mathbb{N}$

Theorem: $\lim a_n = a \to \lim a_{n_k} = a$

PROOF: Let $\varepsilon > 0$ arbitrary so $\exists N \in \mathbb{N}$ s.t $n \geq N \rightarrow |a_n - a| < \varepsilon$ Use $n_k > k$ so you can say that $k > N \Rightarrow n_k > N$ So $|a_{n_k} - a| < \varepsilon$

Examples:

1: $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots)$ Example of subsequences: $n_k = k + 4 \rightarrow (a_{n_k}) = (\frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \ldots)$ $n_k = 2k \rightarrow (a_{n_k}) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots)$ $n_k = 10^k \rightarrow (a_{n_k}) = \overline{(\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \ldots)}$ 2: $(a_n) = (-1, 1, -1, 1, ...)$ diverges: Take 2 subsequences: $n_k = 2k \rightarrow (a_{n_k}) = (1, 1, 1, 1, \ldots) \rightarrow \lim a_{n_k} = 1 \ n_k = 2k - 1 \rightarrow (a_{n_k}) = (-1, -1, -1, -1, \ldots) \rightarrow$ $\lim a_{n_k} = -1$ Different subsequences have different limits $\rightarrow (a_n)$ diverges.

Bolzano-Weierstrass theorem:

Every bounded sequence convergent subsequence PROOF: $\forall n \exists M > 0 \text{ s.t. } a_n \in [-M, M]$ Every bounded sequence has a convergent subsequence.

Halving proces: nested intervals: $I_1 \subset I_2 \subset I_3 \subset \cdots \Rightarrow \text{NIP} \rightarrow \text{there exists } x \in \bigcap^{\infty}$ $\bigcap_{n=1} I_n$

Each I_k contains infinitely many terms of sequence. Pick $n_1 \in \mathbb{N}$ with $a_{n_1} \in I_1$

Pick $n_2 \in \mathbb{N}$ with $n_2 > n_1$ and $a_{n_2} \in I_2$ Pick $n_3 \in \mathbb{N}$ with $n_3 > n_2$ and $a_{n_3} \in I_3$. . . Note that $\begin{aligned} x \in I_k \\ a_{n_k} \in I_k \end{aligned}$ $\Big\} \to |a_{n_k} - x| \leq \text{length}(I_k) = \frac{2M}{2^k} \to 0$ So convergent subsequence.

add infinitely many numbers.

infinite series: $\sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \ldots$ n −th partial sum: $s_n = a_1 + a_2 + \ldots + a_n$ if $s_n = s$ then we say that the series converges to s Euler's famous example: $\sum_{i=1}^{\infty}$ $k=1$ $\frac{1}{k^2}$ converges: PROOF: $s_n = 1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2}$ so $s_n < s_{n+1}$ for all $n \in \mathbb{N}$ so $s_n < 2$ for all $n \in \mathbb{N}$ MCT: Limits s_n exists. Why is $s_n < 2$ for all $n \in \mathbb{N}$? $s_n = 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \frac{1}{4 \cdot 4} + \ldots + \frac{1}{n \cdot n} < 1 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3} + \ldots + \frac{1}{n(n-1)}$ = 1 + (1 - $\frac{1}{2}$) + ($\frac{1}{2}$ - $\frac{1}{3}$) + ... + ($\frac{1}{n-1}$ - $\frac{1}{n}$ = 1 + 1 - $\frac{1}{n}$ = 2 - $\frac{1}{n}$
 $s_n < 2 - \frac{1}{n}$ so $s_n < 2$ Remark: since $s_n < 2$, for all n the order limit theorem implies: $\sum_{i=1}^{\infty}$ $k=1$ $\frac{1}{k^2} = \lim s_n \leq 2$ Euler found also: $\sum_{n=1}^{\infty}$ $rac{\pi^2}{6}$ and $\sum_{n=1}^{\infty}$

 $k=1$ $\frac{1}{k^2} = \frac{\pi^2}{6}$ $k=1$ $\frac{1}{k^4} = \frac{\pi^4}{90}$ 90 For even power of \overrightarrow{k} we know the solution of the infinite summ, for odd powers of k the solution is unknown.

The harmonic series and intergral test for converges:

Harmonic series: $\sum\limits^{\infty}_{ }$ $k=1$ $\frac{1}{k}$ diverges. PROOF: $s_n = 1 + \frac{1}{n} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$
 $s_{n^k} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \ldots + \frac{1}{8}) + \ldots + (\frac{1}{2^{k-1}+1} + \ldots + \frac{1}{2^k})$ $s_{n^k} > 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + \ldots + (\frac{1}{8} + \ldots + \frac{1}{8}) + \ldots + (\frac{1}{2^k} + \ldots + \frac{1}{2^k})$ $= 1 + \frac{1}{2} + 2(\frac{1}{4} + 4(\frac{1}{8}) + \ldots + 2^{k-1}(\frac{1}{2^k})$ $s > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2}$ $s > 1 + \frac{\overline{k}}{2}$ for all $k \in \mathbb{N}$

So s_n is unbounded (because the subsequence is divergent) and therefore s_n is divergent. The integral test:

Assume that $f : [1, \infty) \to \mathbb{R}$ is positive, continuous and monotonically decreasing. Let $a_k = f(k)$ then $\sum_{k=1}^{\infty} a_k$ converges $\leftrightarrow \int_{k=1}^{\infty}$ $k=1$ $f(x)dx < \infty$

PROOF: where $s_n = a_1 + a_2 + \ldots + a_n$ because $a_k > 0$ increasing.

$$
\int_{0}^{\frac{a_1}{a_1}} \int_{0}^{\frac{a_2}{a_2}} f(x) dx < \infty
$$
 so s_n bounded & convergent, $\int_{1}^{\infty} f(x) dx = \infty$ so s_n unbounded & divergent.

Cauchy sequence:

Properties of series and algebraic limit theorem:

INFINITE SERIES: $\sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \ldots$ N-TH PARTIAL SUM: $s_n = a_1 + a_2 + \ldots + a_n$ CONVERGENCE: $\sum_{n=1}^{\infty}$ $\sum_{k=1} a_k = A \leftarrow$ by definition $\rightarrow \lim s_n = A$ Algebraic limit theorem: if $\sum_{i=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k = A \text{ and } \sum_{k=1}^{\infty} b_k = B \text{ then:}$ $(1)\sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} ca_k = cA$ for all $c \in \mathbb{R}$ $(2)\sum_{n=1}^{\infty}$ $\sum_{k=1} (a_k + b_k)A + B$ Proof:

Apply analogous theorem for sequences to partial sums.

Cauchy criterion:

Theorem: The following statements are equivalent:

 $(1) \sum_{n=1}^{\infty}$ $\sum_{k=1} a_k$ converges. (2) for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $n > m \ge N \to |a_{m+1} + a_{m+2} + ... + a_n| < \varepsilon$ PROOF: Note that: $|s_n - s_m| = |a_{m+1} + ... + a_n|$ Statement 1⇔ (s_n) converges ⇔ (s_n) Cauchy ⇔ statement 2. So equivalent.

Example:

 $\sum_{i=1}^{\infty}$ $k=1$ $\frac{1}{k}$ diverges. For any $m \in \mathbb{N}$ and $n = 2m$ we have: $|a_{m+1} + a_{m+2} + \ldots + a_n| = \frac{1}{m+1} + \frac{1}{m+2} + \ldots + \frac{1}{2m} > \frac{m}{2m} = \frac{1}{2}$ So: $|a_{m+1} + a_{m+2} + \ldots + a_n| > \frac{1}{2}$
Hence, the Cauchy criterion fails. So, this serie is diverges.

Necessary condition for convergence:

Theorem: $\sum\limits^{\infty}$ $\sum_{k=1} a_k$ converges $\Rightarrow \lim a_k = 0$ PROOF: Let $\varepsilon > 0$ be arbitrary. There exists $N \in \mathbb{N}$ s.t. $n > m \ge N \Rightarrow |a_{m+1} + a_{m+2} + \ldots + a_n| < \varepsilon$ $n = m + 1$ and $m \ge N \Rightarrow |a_{m+1}| < \varepsilon$

Warning: opposite is not true. Counterexample: $\lim_{k \to \infty} \frac{1}{k} = 0$ but $\sum_{k=1}^{\infty}$ $\frac{1}{k}$ diverges. Note:

The previous theorem also gives a test for divergence.

Example: $\sum_{n=1}^{\infty}$ $k=1$ $(-1)^{k+1}\frac{k+1}{2k} = 1 - \frac{3}{4} + \frac{4}{6} - \frac{5}{8} + \dots$ Diverges since $\lim a_k = \lim (-1)^{k+1} \cdot \frac{k+1}{2k}$ does not exist.

Comparison test

Theorem if $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$, then: $(1)\sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} b_k$ converges $\rightarrow \sum_{k=1}^{\infty}$ $\sum_{k=1} a_k$ converges. $(2) \sum_{n=1}^{\infty}$ $\sum_{k=2}^{\infty} a_k$ diverges $\rightarrow \sum_{k=2}^{\infty}$ $\sum_{k=2} b_k$ diverges PROOF: $|a_{m+1} + a_{m+2} + \ldots + a_n| = a_{m+1} + a_{m+2} + \ldots + a_n$ $\leq b_{m+1} + b_{m+2} + \ldots + b_n = |b_{m+1} + b_{m+2} + \ldots + b_n|$ Apply the cauchy criterion for series. Note:

Theorem does not have to hold for all k but just for large k

Example:

 $\sum_{k=1}^{\infty} \frac{1}{k!}$ converges $k=1$
For $k \geq 4$ we have: $k! \geq k^2 \to \frac{1}{k!} \leq \frac{1}{k^2}$
Apply comparison test: $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converg $k=1$ $\frac{1}{k^2}$ converges $\rightarrow \sum_{n=1}^{\infty}$ $k=1$ $\frac{1}{k!}$ converges.

Alternating series test:

Theorem: assume: $(-)$ 0 $\leq a_{k+1} \leq a_k$ for all $k \in \mathbb{N}$ $(-)$ lim $a_k = 0$ Then the alternating series \sum^{∞} $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges. Proof: Consider the partial sums: $s_n = a_1 - a_2 + a_3 - \ldots + (-1)^{n+1} a_n$ Proof (Ctd): the partial sums form nested intervals: $I_n = [s_{2n}, s_{2n-1}] \Rightarrow I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$ $NIP \Rightarrow \exists s \in \mathbb{R} \text{ s.t. } s \in I_n \text{ for all } n \in \mathbb{N}$ let $\varepsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ s.t. $a_{2N} < \varepsilon$ then: $n \geq 2N \Rightarrow s, s_n \in I_n = [s_{2N}, s_{2n-1}]$ $\Rightarrow |s - s_n| \leq s_{2N-1} - s_{2N}$ $\Rightarrow |s - s_n| \leq a_{2N}$ $\Rightarrow |s - s_n| < \varepsilon$

Example:

 $\sum_{i=1}^{\infty}$ $k=1$ $\frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \dots$ converges. $\sum_{k=1}^{k=1}$ This follows from the alternating series test: $a_k = \frac{1}{k}$ satisfies $0 \le a_{k+1} \le a_k$ and $\lim a_k = 0$

Absolute vs. conditional convergence:

Theorem: $\sum\limits^{\infty}_{ }$ $\sum_{k=1}^{\infty} |a_k|$ converges $\rightarrow \sum_{k=1}^{\infty}$ $\sum_{k=1} a_k$ converges. Proof: $0 \le a_k + |a_k| \le 2|a_k|$ for all $k \in \mathbb{N}$ Comparison test $\rightarrow \sum^{\infty}$ $\sum_{k=1} (a_k + |a_k|)$ converges. Apply Algebraic limit theorem: $\sum_{i=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty} |a_k|$ converges.

Absolute and conditional convergent:

 $\sum^{\infty} a_k$ is called: $^{k=1}$ (1) Absolutely convergent if \sum^{∞} $\sum_{k=1}^{\infty} |a_k|$ converges. Example: $\sum_{k=1}^{\infty}$ $(-1)^{k+1}$ $k²$ (2) CONDITIONALLY CONVERGENT if it converges, but $\sum_{n=0}^{\infty}$ $\sum_{k=1}^{\infty} |a_k|$ diverges. Example: $\sum_{k=1}^{\infty}$ $(-1)^{k+1}$ k

Geometric and telescoping series:

GEOMETRIC SERIES: is of the form: $\sum_{n=1}^{\infty}$ $k=0$ $ar^k = a + ar + ar^2 + ...$ PARTIAL SUMS: $s_n = a + ar + ar^2 + ... + ar^{n-1} \Rightarrow rs_n = ar + ar^2 + ar^3 + ... + ar^n \Rightarrow (1-r)s_n = a(1-r^n)$ For $|r| < 1$ we have: $s_n = \lim_{n \to \infty} \frac{(1 - r^n)}{1 - r} = \frac{a}{1 - r}$

TELESCOPING SERIES: of the form $\sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty}$ $\sum_{k=1} (b_k - b_{k+1})$ Successive terms cancel eachother out $s_n = a_1 + a_2 + a_3 + \ldots + a_n$

 $s_n = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \ldots + (b_n - b_{n+1}) = b_1 - b_{n+1}$ The series converges \Leftrightarrow (b_n) converges.

Example:

1: We have $0.999\dots = 1$ This follows from: $0.999... = \sum_{n=1}^{\infty}$ $k=1$ $\frac{9}{10^k} = \frac{1}{10} \sum_{n=1}^{\infty}$ $k=0$ $9(\frac{1}{10})^k = \frac{1}{10} \cdot \frac{9}{1-\frac{1}{10}} = 1$ $2:$ 3: $\sum_{i=1}^{\infty}$ $k=1$ $\frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \ldots = 1$ $k=1$ $\frac{1}{k^2+7k+12}=\frac{1}{4}$ Solution: Solution: Solution: $s_n = \sum_{n=1}^n$ $k=1$ $(\frac{1}{k} - \frac{1}{k+1})$ $s_n = \sum_{n=1}^{\infty}$ $k=1$ $\frac{1}{k^2+7k+12} = \sum_{n=1}^{\infty}$ $k=1$ $\frac{1}{(k+3)(k+4)} = \sum_{k=1}^{n}$ $k=1$ $\left(\frac{1}{k+3} - \frac{1}{k+4}\right)$ $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \ldots + (\frac{1}{n} - \frac{1}{n+1}) = (\frac{1}{4} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{6}) + (\frac{1}{6} - \frac{1}{7}) + \ldots + (\frac{1}{n+3} - \frac{1}{n+4})$ $= 1 - \frac{1}{n+1} \to 1$ $= \frac{1}{4} - \frac{1}{n+4} \to \frac{1}{4}$

open and closed intervals, open sets:

CLOSED INTERVAL: (endpoints included): $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$ OPEN INTERVAL: (endpoints not included): $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ How to define open and closed for arbitrary sets? OPEN SETS: $O \subset \mathbb{R}$ open if $\forall a \in O$ there $\exists \varepsilon > O$ s.t. $V_{\varepsilon} \subset O$ Recall: $V_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon)$ Note: the empty set \emptyset is open by definition.

Example:

1: the interval (c, d) is open. take $x \in (c, d)$ arbitrary. Take $\varepsilon = \min\{|x - c|, |x - d|\}$, then $V_{\varepsilon} \subset (c, d)$ 2: The interval $[c, d)$ is not open, for $x = c$ no $\varepsilon > 0$ works. Because for any $\varepsilon, c - \varepsilon$ is not in the interval. 3: Q is not open. Take $\varepsilon > 0$ arbitrary. Take $n \in \mathbb{N}$ s.t. $\frac{1}{n} < \frac{e}{\sqrt{2}}$ and set $x = \frac{\sqrt{2}}{n}$
Then $x \in V_{\varepsilon}(0)$ but $x \neq \mathbb{Q}$

Unions and intersections:

Theorem:

(1) Union of arbitrary collections of open sets are open. (2) Intersections of finite collections of open sets are open. PROOF: (1) Let $O = \bigcup$ $\bigcup_{i\in I} O_i$ with each O_i open. $x \in O \to x \in O_i$ for some $i \in I$ There exists $\varepsilon > 0$ s.t. $V_{\varepsilon}(X) \subseteq O_i \subseteq O$ (2) let $O = O_1 \cap O_2 \cap \ldots \cap O_n$ with each O_i open. $x \in O \to x \in O_i$ for all $i = 1, \ldots, n$ For all $i = 1, ..., n$ there exists, $\varepsilon_i > 0$ such that $V_{\varepsilon_i}(x) \subseteq O_i$ For $\varepsilon = \min\{\varepsilon_1,\ldots,\varepsilon_n\}$ we have: $V_{\varepsilon}(x) \subseteq O_i$ for all $i = 1,\ldots,n$ WARNING: intersection infinitely many open sets need not to be open: Counterexample: O_n is open for all $n \in \mathbb{N}$: because $\bigcap_{n=1}^{\infty} O_n = \{0\}$ is not open.

Warning:

The intersection of infinitely many open sets NEED NOT BE open! Counterexample: $n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, is open for all $n \in \mathbb{N}$ \bigcap^{∞} $O_n = \{0\}$ is not open! $n=1$

Limit points:

LIMIT POINT: x is a limit point of $A \subseteq \mathbb{R}$ if: $\forall \varepsilon > 0$ of $V_{\varepsilon}(x)$ intersects A in some point other than x Note: limit points of A may or may not belong to A . Theorem: The following statements are equivalent. (1) x is a limit point of A (2) There exists a sequence $a_n \neq x, \forall n \in \mathbb{N}$ and $x = \lim a_n$ PROOF: $1 \rightarrow 2$ Let $n \in \mathbb{N}$ and set $\varepsilon = \frac{1}{n}$ There exists $a_n \in V_{\varepsilon}(x) \cap A$ with $a_n \neq x$ Note that: $|a_n - x| < \varepsilon = \frac{1}{n}$ $2 \rightarrow 1$ for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t.: $n \geq N \rightarrow |a_n - x| < \varepsilon$ By assumption $A_N \neq x$ and $A_n \in A$ we can conclude that $A_n \in V_{\varepsilon}(x)$

Example:

 $1:$ 2: $x = 0$ is a limit point of $A = \{\frac{1}{n} : n \in \mathbb{N}\}\$ $x = 0$ and $x = 1$ are limits of $A = (0, 1)$ Take $\varepsilon > 0$ arbitrary.
Take $n \in \mathbb{N}$ s.t. $\frac{1}{n} < \varepsilon$ For $x = 0$ take $a_n = \frac{1}{n+1}$
For $x = 1$ take $a_n = \frac{n}{n+1}$ Take $n \in \mathbb{N}$ s.t. $\frac{1}{n} < \varepsilon$ Then $\frac{1}{n} \in V_{\varepsilon}(n) \cap A$ Note: $0 \notin A$

Prove same result by means of definition.

Closed sets:

CLOSED TEST: contains it limits. Can't leave set by taking limits. Theorem: Equivalent: (1) F is closed (2) Every Cauchy sequence in F has its limit in F PROOF: $1 \to 2$ Let $(a_n) \subset F$ be Cauchy. $x = \lim_{n \to \infty} a_n$ exists; now consider 2 cases: (a): $x \neq a_n$ then for all $n \in \mathbb{N} \to x$ is a limit point of $F \to x \in F$ (b): $x = a_n$ for some $n \in \mathbb{N} \to x \in F$ holds trivially. $2 \rightarrow 1$ Let x be a limit point of F $x = \lim a_n$ with $a_n \in F$ and $a_n \neq x$ for all $n \in \mathbb{N}$ (a_n) convergent $\rightarrow (a_n)$ Cauchy $\rightarrow x \in F$ by assumption.

Example:

 $[c, d]$ is closed. Let x be a limit point of $[c, d]$ x = lim x_n for some sequence $(x_n) \subseteq [c, d]$ $c \leq x_n \leq d$ for all $n \in \mathbb{N}$ Order limit theorem: $c \leq x \leq d \rightarrow x \in [c, d]$

Closure:

CLOSURE OF $A: \overline{A} = A \cup \{all \text{ limit points of } A\}$ **Theorem:** \overline{A} is closed. PROOF: (1) x limit point of A and $A \subset \overline{A}$ then x limit point \overline{A} $(2) A = A \cup LL$ with $L = \{$ Limit points of A $\}$ x limit point of $\overline{A} \to \forall \varepsilon > 0$ there $\exists y \in V_{\varepsilon}(x) \cap \overline{A}$ where $y \neq x$ So $y \in A \vee y \in L$ (a) $y \in A \to x$ is a limit point of A $(b) u \in L$ $\rightarrow \forall \delta > 0$ there $\exists z \in V_{\delta}(y) \cap A$ where $z \neq y$ Note: $V_\delta(y) \subset V_\varepsilon(x)$ around $\{x\}$ for δ small enough $\rightarrow x$ is a limit point of A Theorem completeness: (1) O open \Leftrightarrow O^c closed.

 (2) F closed \Leftrightarrow F^c open.

Mutually exclusive:

Sets are not open OR closed. They can be neither open nor closed $(0, 1]$ and \mathbb{Q} , but they also can be open and closed, $\mathbb R$ and \emptyset

So impossible to prove openess or closeness by contradiction.

Unions and intersections:

(1) uninons of finite collections of closed sets are closed.

(2) intersections of arbitrary collections of closed sets are closed.

PROOF: (1) (2) F_1, \ldots, F_n closed F_i^c open for all $i \in I$ F_1^c, \ldots, F_n^c open $\rightarrow F_1^c \cap \ldots \cap F_n^c$ open $\bigcup_{i \in I} (F_i)^c$ open $\rightarrow (\bigcup_{i \in I} (F_i)^c)$ i∈I $F_i^c)^c$ closed $\rightarrow (F_1^c \cap ... \cap F_n^c)^c \text{ closed } \rightarrow F_1 \cup ... \cup F_n \text{ closed.}$ $\rightarrow \bigcap$ $\bigcap_{i\in I} F_i$ closed. Warning: union infinitely many closed sets need not to be closed. Counterexample: $F_n = \left[-\frac{n}{n+1}, \frac{n}{n+1}\right]$ closed for all $n \in \mathbb{N}$ but $\bigcup_{n=1}^{\infty} F_n = (-1, 1)$ not closed.

example

 $\overline{\text{if}} A = (0, 1) \text{ then } \overline{A} = [0, 1]$ $\overline{\mathbb{Q}} = \mathbb{R}$ All points of A are limit points. Take $x \in \mathbb{R}$ and $\varepsilon > 0$ arbitrary. Also, $x = 0$ and $x = 1$ are limit points. \mathbb{Q} is dense in R: there exists $r \in \mathbb{Q}$ If $x < 0$ or $x > 1$ then x is not a limit point of A such that $x < r < x + \varepsilon$

```
1: 2:
                                 Hence \in V_{\varepsilon}(x) \cap \mathbb{Q} and r \neq xSo, each x \in \mathbb{R} is a limit point of \mathbb{Q}
```
Sequential definition:

COMPACT SET a set $K \subseteq \mathbb{R}$ is compact if every sequence in K has a convergent subsequence with a limit in K

Theorem:

 $K\subseteq\mathbb{R}$ compact \leftrightarrow K closed and bounded. PROOF:

Theorem: Assume $K_n \neq \emptyset$ is compact for all $n \in \mathbb{N}$ and $K_1 \supseteq K_2 \supseteq \ldots$ then $\bigcap_{n=1}^{\infty} K_n$ nonempty.

Example:

Open covers:

 $A \subseteq \mathbb{R}$ and assume $O_i \subseteq \mathbb{R}$ where $i \in I$ are open. OPEN COVER: O_i if $A \subseteq \bigcup$ $\bigcup_{i\in I} O_i$

Theorem: K compact $\leftrightarrow K$ has a finite subcover. PROOF:

Heine Borel theorem: Let $K \subseteq \mathbb{R}$ then following statements equivalent:

- $(1) K$ is compact
- $(2) K$ is closed and bounded.
- (3) Any open cover K has a finite subcover.

Example:

1: Possible open covers for $A = (0, 1)$: $O_1 = \mathbb{R}$ $O_1 = (0, 1)$ $O_1 = (0, \frac{1}{2})$ and $O_2 = (\frac{1}{3}, 5)$ $O_2 = \left(-\frac{\tilde{n}}{10}, \frac{n}{10}\right), n \in \mathbb{N}$. Has a finite subcover! $O_a = \left(\frac{1}{a}, 2\right), a \ge 1$ does not have a finite subcover! 2: Every finite set is compact: Let $K = \{a_1, a_2, \ldots, a_p\}$ Let O_i where $i \in I$ be an open cover for K There exists $i_1, \ldots i_p \in I$ s.t. $a_k \in O_{i_k}$ Therefore $K \subset O_{i_1} \cup \ldots \cup O_{i_p}$

LIMIT POINT: c is a limit point of A where $f : A \to \mathbb{R}$ when:

$$
\lim_{x \to c} f(x) = L \text{ when: } \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } \begin{cases} 0 < |x - c| < \delta \\ x \in A \end{cases} \Rightarrow |f(x) - L| < \varepsilon
$$
\nNote: f need not be defined at c

Note: type definition: ε , δ definition.

SEQUENTIAL CHARACTERIZATION:

Let $f : A \to \mathbb{R}$ and c a limit point of A the following statements are equivalent: (1) $\lim_{x \to c} f(x) = L$ (2) lim $f(x_n) = L$ for all $(x_n) \subset A$ with $x_n \neq c$ and lim $x_n = c$ (3) $\lim_{x \to c} f(x)$ does not exist if there exist $(x_n), (y_n) \subseteq A$ s.t. (a) $x_n \neq c$ and $y_n \neq c$ (b) $\lim x_n = \lim y_n = c$ (c) $\lim f(x_n) \neq \lim f(y_n)$

Example:

1: $\lim_{x \to 2} \frac{x^2 + x - 6}{5x - 10} = 1$ Let $\varepsilon > 0$ be arbitrary and set $\delta = 5\varepsilon$ If $0 < |x - 2| < \delta$, then: $\begin{array}{c} \hline \end{array}$ $\frac{x^2+x-6}{5x-10}-1$ = $\Big|$ $\left| \frac{(x+3)(x-2)}{5(x-2)} - 1 \right| = \left| \frac{x+3}{5} - 1 \right| = \frac{|x-2|}{5} < \frac{5}{\delta} = \epsilon$ 2: $\lim_{x \to c} \sqrt{x} = \sqrt{c}$ for $c > 0$ $\left|\sqrt{x} - \sqrt{c}\right| = \left|\frac{x-c}{\sqrt{x} + \sqrt{c}}\right| = \frac{|x-c|}{\sqrt{x} + \sqrt{c}}$ With $\varepsilon > 0$ and $\delta = \sqrt{c} \cdot \varepsilon$ the definition is satisfied. So, $|\sqrt{x} - \sqrt{c}| \leq \frac{|x-c|}{\sqrt{c}}$ 3: $\lim_{x\to 0} f(x)$ does not exist for: $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \neq 0 \end{cases}$ 0 if $x \notin \mathbb{Q}$ and take $x_n = \frac{1}{n}$ and $y_n = \frac{\sqrt{2}}{n}$ then it satify: $\lim x_n = \lim y_n = 0$ $\lim f(x_n) = 1$ and $\lim f(y_n) = 0$ so the limit does not exist.

Algebraic porperties:

Let $f, g: A \to \mathbb{R}, c$ a limit point of A and $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$ Then:

CONTINOUS function $f : A \to \mathbb{R}$ if $\forall \varepsilon > 0$ there $\exists \delta > 0$ s.t. $\begin{cases} |x - c| < \delta \\ s \leq 1 \end{cases}$ $x \in A$ $\left\{\Rightarrow |f(x)-f(c)| < \varepsilon\right\}$

Notes:

 $(1) f(c)$ needs to be defined

 $(2) c$ need not to be a limit point of A

 (3) δ may depend on $\epsilon \&c$

(4) type of definition= ε , δ definition.

Example:

1: If $c \in A$ is isolated then $f : A \to \mathbb{R}$ is continuous at c Let $\varepsilon > 0$ Take $\delta > 0$ s.t. $V_\delta(c) \cap A = \{c\}$, then: $|x - c| < \delta$ and $x \in A \Rightarrow x \in V_\delta(c) \cap A$ \Rightarrow $x = c \Rightarrow f(x) = f(c) \Rightarrow |f(x) - f(c)| = 0 \le \varepsilon$ 2: $f(x) = x^2$ is continuous at every $c \in \mathbb{R}$ For $|x - c| < 1$ we have $|x| < |c| + 1$ and $|f(x) - f(c)| = |x^2 - c^2| = |x + c||x - c| \le (|x| + |c|)|x - c| < (2|c| + 1)|x - c|$
For a given $\varepsilon > 0$ take $\delta = \min\{1, \frac{\varepsilon}{2|c|+1}\}$ 3: $f(x) = |x|$ is continuous at every $c \in \mathbb{R}$ For al $x, c \in \mathbb{R}$ we have: $|f(x) - f(c)| = ||x| - |c|| \leq |x - c|$ For a given $\varepsilon > 0$ take $\delta = \varepsilon$ δ independent of c here because constant slope (-1 or 1).

sequential characterization:

 $f : A \to \mathbb{R}$ and $c \in A$ Then following statements equivalent. (1) f continuous $@c$ (2) $(x_n) \subseteq A$ and $\lim x_n = c \Rightarrow \lim f(x_n) = f(c)$ (3) c limit point of A then 1& 2 also equivalent with $\lim_{x \to c} f(x) = f(c)$

 $f: A \to \mathbb{R}$ and $c \in A$ limit point. f not continuous $\mathbb{Q}x = c$ if there exists $(x_n) \subseteq A$ s.t. $x_n \neq c$ $\lim x_n = c$ $\lim f(x_n) \neq f(c)$

Example:

there exists no number $a \in \mathbb{R}$ that makes: $f(x) = \begin{cases} \sin \frac{1}{x} \text{ if } x \neq 0 \\ \sin \frac{1}{x} \text{ if } x = 0 \end{cases}$ a if $x = 0$ continuous at $x = 0$ (-) if $a \neq 0$, then with $x_n = \frac{1}{n\pi}$, we have: $\lim x_n = 0$ but $\lim f(x_n) = 0 \neq a = f(0)$ (-) if $a = 0$ then with $x_n = \frac{m_1}{2n\pi + \frac{\pi}{2}}$ we have $\lim x_n = 0$ but $\lim f(x_n) = 1 \neq a = f(0)$

Dirichlet's function:

Thomae's function:

 $t(x) =$ \int \mathfrak{r} 1 if $x = 0$
 $\frac{1}{n}$ if $x = m/n \in \mathbb{Q} \setminus \{0\}$ in lowest terms with $n > 0$ 0 if $x \notin \mathbb{Q}$ Discontinuous at each $c \in \mathbb{Q}$ but continuous at each $c \in \mathbb{R} \setminus \mathbb{Q}$ PROOF: Discontinuity at $c \in \mathbb{Q}$ Take $x_n = c + \frac{\sqrt{2}}{n}$ Then $\lim x_n = c$ but $\lim t(x_n) = 0 \neq t(c)$ Proof of continuity at $c \in \mathbb{R} \setminus \mathbb{Q}$ Let $\varepsilon > 0$ and pick $k \in \mathbb{N}$ with $\frac{1}{k} < \varepsilon$ $(c-1, c+1)$ contains finitely many $r \in \mathbb{Q}$ with denominator $\leq k$ Pick $0 < \delta < 1$ such that $(c - \delta, c + \delta)$ contains no rationals with denominator $\leq k$ then: $|x - c| < \delta \Rightarrow |t(x) - t(c)| = |t(x)| = t(x) < \frac{1}{k} < \varepsilon$

Theorem: $f : A \to \mathbb{R}$ continuous and $K \subseteq A$ compact \Rightarrow $f(K)$ compact.

PROOF:

Let $(y_n) \subseteq f(K)$ arbitraru.

 $\exists (x_n) \subseteq K$ s.t. $y_n = f(x_n)$ for all n

K compact \Rightarrow some subsequence $x_{n_k} \to x \in K$ f continuous \Rightarrow $y_{n_k} = f(x_{n_k}) \rightarrow f(x) \in F(K)$ WARNING: false for pre-images: $f^{-1}(K) = \{x \in A : f(x) \in K\}$ Counter example: $f(x) = 0$ forall $x \in \mathbb{R}$, so K any compact set containing 0, so $f^{-1}(K) = \mathbb{R}$ is not

compact.

Theorem maxima and minima:

Let $K \subset \mathbb{R}$ be compact and $f : K \to \mathbb{R}$ continuous then f attains a maximum and a minimum on K

PROOF:

Maximum Minimum Exercise 3.3.1 \Rightarrow s = sup $f(K)$ exists and $s \in f(K)$ Exercise 3.3.1 \Rightarrow i = inf $f(K)$ exists and $i \in f(K)$ $s = f(c)$ for some $c \in K$ i = $f(c)$ for some $c \in K$ s is an upper bound for $f(K) \Rightarrow f(x) \leq s$ forall $x \in K$ is a lower bound for $f(K) \Rightarrow f(x) \geq i$ for all $x \in K$

Warning: without compactness previous theorem is false. Counterexample: $f(x) = x$ no minimum on $(0, 1]$ no maximum on $(0, 1)$ neither a maximum nor a minimum on R

UNIFORM CONTINUOUS $f : A \to \mathbb{R}$ on A if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x, y \in A$: $|x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$

Uniform means that δ does not depend on x or y (but δ may still depend on ε) NOT UNIFORM CONTINUOUS: $\exists \varepsilon_0 > 0$ s.t. $\forall \delta > 0, \exists x, y \in A$ for which $|x - y| < \delta$, but $|f(x) - f(y)| \ge$ ε_0

Theorem: $f: K \to \mathbb{R}$ continuous and K is compact, then f uniformly continuous on K PROOF:

Let $\varepsilon > 0$ be arbitrary.

For all $c \in K$ there exists $\delta_c > 0$ such that $|x - c| < 2\delta_c \Rightarrow |f(x) - f(c)| < \frac{1}{2}\varepsilon$ $O_c = (c - \delta_c, c + \delta_c)$ with $c \in K$, form an open cover for K $K \subset O_{c_1} \cup \ldots \cup O_{c_n}$ for some $c_1, \ldots, c_n \in K$ Take $x, y \in K$ with $|x - y| < \delta = \min\{\delta_{c_1}, \dots, \delta_{c_n}\}\$ $|x - c_i| < \delta_{c_i}$ for some $i = 1, \ldots, n$ $|f(x) - f(c_i)| < \frac{1}{2}\varepsilon$ $|c_i - y| \leq |c_i - x| + |x - y| < \delta_{c_i} + \delta < 2\delta_{c_i}$ $|f(c_i) - f(y)| < \frac{1}{2}\varepsilon$ Apply triangle inequality with $|f(x) - f(c_i)| < \frac{1}{2}\varepsilon$ and $|f(c_i) - f(y)| < \frac{1}{2}\varepsilon$ \Rightarrow $|f(x) - f(y)| < \varepsilon$

Examples:

1:

 $f(x) = ax + b$ is uniformly continuous on R For $x, y \in \mathbb{R}$ we have: $|f(x) - f(y)| = |(x + b) - (ay + b)| = |a||x - y|$ Let $\varepsilon > 0$ and pick $\delta = \frac{\varepsilon}{|a|}$ then for all $x, y \in \mathbb{R}$ we have: $|x - y| < \delta \Rightarrow |f(x) - f(y)| < |a|\delta = \varepsilon$ When $a = 0$ we can choose any δ 2.5 $f(x) = x^2$ is uniformly continuous on [a, b] For $x, y \in [a, b]$ we have: $|f(x) - f(y)| = |x + y||x - y| \le (|x| + |y|)|x - y| \le 2M|x - y|$ where $M := \max\{|a|, |b|\}$ For $\varepsilon > 0$ take $\delta = \frac{\varepsilon}{2M}$ then for all $x, y \in [a, b]$ we have: $|x - y| < \delta \Rightarrow |f(x) - f(y)| < 2M\delta = \varepsilon$ 3: $f(x) = x^2$ is not uniformly continuous on R $x_n = n + \frac{1}{n}$ and $y_n = n$ $|x_n - y_n| = \frac{1}{n} \to 0$ $|f(x_n) = f(y_n)| = 2 + \frac{1}{n^2} > 2$ and $\forall n \in \mathbb{N}$ 4: $f(x) = \frac{1}{x}$ is uniform continuous on $[a, \infty)$ for all $a > 0$ For $x, y \in [a, \infty)$ we have: $\begin{array}{c} \hline \end{array}$ $\frac{1}{x} - \frac{1}{y}$ = $\Big|$ $\left|\frac{y-x}{xy}\right| = \frac{|x-y|}{xy} \le \frac{|x-y|}{a^2}$ For $\varepsilon > 0$ take $\delta = a^2 \varepsilon$ then for all $x, y \in [a, \infty)$ we have $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\delta}{a^2} = \varepsilon$ 5: $f(x) = \frac{1}{x}$ is not unif. cont. on $(0, \infty)$ $x_n = \frac{1}{n+1}$ and $y_n = \frac{1}{n}$
 $|x_n - y_n| \to 0$ $|f(x_n) - f(y_n)| = 1, \forall n \in \mathbb{N}$ 6: \sqrt{x} is uniformly continuous on $[1, \infty)$ For $x, y \geq 1$ we have: $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\sqrt{x}-\sqrt{y}\Big| = \Big|\frac{x-y}{\sqrt{x}+\sqrt{y}}\Big| = \frac{|x-y|}{\sqrt{x}+\sqrt{y}} \le \frac{|x-y|}{2}$ 2 For given $\varepsilon > 0$ take $\delta = 2\varepsilon$ to satisfy the definition. 7:

 $[0, 1]$ is compact and $f(x) = \sqrt{x}$ continuous on $[0, 1]$ gives the conclusion that f is continuous on [0, 1]

Intermediate value theorem:

 $f : [a, b] \to \mathbb{R}$ continuous and $f(a) < L < f(b)$ or $f(a) > L > f(b)$ then $f(c) = L$ for some $c \in (a, b)$ Note:Without loss of generality we can assume $(-) L = 0$ otherwise replace $f(x)$ by $f(x) - L$ (-) $f(a) < 0 < f(b)$, otherwise replace $f(x)$ by $-f(x)$ PROOF: $\exists I_n = [a_n, b_n]$ s.t. $f(a_n) < 0 \le f(b_n)$ so $I_0 \supseteq I_1 \supseteq I_2 \supseteq \dots$ so Length $(I_n) = \frac{b-a_n}{2^n}$ So $\exists c \in [a, b]$ so $\exists c \in I_n = [a_n, b_n]$, $\forall n \in \mathbb{N}$ Note that: $|a_n - c| \leq \text{Length}(I_n) \to 0 \mid |b_n - c| \leq \text{Length}(I_n) \to 0$ So $c = \lim a_n = \lim b_n$. Continuity of f implies: $f(c) = \lim f(a_n) = \lim f(b_n)$ We know $f(a_n) < 0$, and $\forall n \in \mathbb{N}$ so $f(c) \leq 0$ We know $f(b_n) \geq 0$, and $\forall n \in \mathbb{N}$ so $f(c) \geq 0$ Combine $f(c) \leq 0$ and $f(c) \geq 0$ we receive $f(c) = 0$

Example:

1: $p(x) = x^5 - 2x^3 - 2$ has a zero on $(0, 2)$ p is continuous on [0, 2] $p(0) = -2 < 0$ and $p(2) = 14 > 0$ IVT \Rightarrow $p(c) = 0$ for some $c \in (0, 2)$ 2: if $f : [a, b] \to \mathbb{R}$ is continuous and $f([a, b]) \subset [a, b]$, then $f(c) = c$ for some $c \in [a, b]$ Assume $f(a) \neq a$ and $f(b) \neq b$ (Otherwise nothing to prove) $f([a, b]) \subset [a, b] \Rightarrow f(a) > a, f(b) < b$ $g(x) = f(x) - x$ is continuous and $g(b) < 0 < g(a)$ IVT \Rightarrow $g(c) = 0$ for some $c \in (a, b)$

Derivative

DERIVATIVE: limit of a difference quotient, denoted by $f'(x)$ DIFFERENTIABLE $f: I \to \mathbb{R}$ (where $I \subseteq \mathbb{R}$, interval) $@c \in I$ if $f'(c) := \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $rac{c_j-f(c)}{x-c}$ exists. **Theorem:** $f: I \to \mathbb{R}$ differentiable at $c \in I \Rightarrow f$ continuous at c PROOF: $\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \frac{f(c) - f(c)}{f(c)} \cdot (x - c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\lim_{x \to c} \left[c - c \right] = f'(c) \cdot 0 = 0$

Example:

1: $f(x) = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ if } x > 0 \end{cases}$ $\begin{array}{c}\n\frac{1}{1+x} > 0 \\
0 & \text{if } x \leq 0\n\end{array}$ is not differentiable at $c = 0$. Reason: f is not continuous at $c = 0$ 2: $f(x) = |x|$ continuous but not differentiable at $c = 0$ $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{|x|}{x}$ $\frac{x_1}{x}$ does not exist. 3: f is differentiable at every $c \neq 0$ and $f'(c) = \begin{cases} 1 \text{ if } c > 0 \\ 1 \text{ if } c \end{cases}$ $\lim_{x \to 1}$ if $c < 0$ where $f(x) = |x|$ 4: $f(x) = \frac{x}{1+|x|} \Rightarrow f'(0) = 1$ We can not use the quotient rule, because derivative of $|x|$ where $x = 0$, does not exist. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\frac{f(x)-f(0)}{x-0}-1\Big| = \Big|$ $\frac{1}{1+|x|} - 1 = |$ $\frac{|x|}{1+|x|} - 1$ = $\frac{|x|}{1+|x|} \leq |x|$ $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 1$, by ε , δ -argument.

Remark: for $c \neq 0$ we can compute $f'(c)$ using calculus rules.

Theorems:

Example:

 $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \neq 0 \end{cases}$ $\lim_{\theta \to 0} \epsilon \ll 0$ is NOT derivative. Assume there exists $F : \mathbb{R} \to \mathbb{R}$ s.t. $F'(x) = f(x)$ Darboux \Rightarrow f attains all values in $(0, 1)$ Contradiction!!

Application to uniform continuity

Example:

 $f(x) = \arctan(x)$ is uniformly continuous on R $\text{MVT} \Rightarrow \forall x, y \in \mathbb{R}, \exists c \in (x, y) \text{ s.t., } \text{arctan}(x) - \text{arctan}(y) = \text{arctan}'(c)(x - y)$ $\arctan(x) - \arctan(y) = \frac{1}{1+c^2}(x-y)$ $|\arctan(x) - \arctan(y)| \leq |x - y|$ For $\varepsilon > 0$ take $\delta = \varepsilon$ to satisfy the definition of uniformly continuity.

Pathologies:

Everywhere continuous, nowhere differentiable.

SEQUENCE OF FUNCTIONS: $f_n: A \to \mathbb{R}$ f_n POINTWISE CONVERGENCE: to $f : A \to \mathbb{R}$ for all fixed $x \in A$ when $\lim f_n(x) = f(x)$ So for fixed $x \in A: \forall \varepsilon > 0 \exists N_{\varepsilon,x} \in \mathbb{N}$ s.t. $n \geq N_{\varepsilon,x} \Rightarrow |f_n(x) - f(x)| < \varepsilon$ f_n UNIFORM CONVERGENCE: to $f : A \to \mathbb{R}$ if: $\forall \varepsilon > 0,$ there $\exists N_{\varepsilon} \in \mathbb{N}$ s.t. $n \geq N_{\varepsilon} \Rightarrow |f_n(x) - f(x)| < \varepsilon \forall x \in A$ Note: independent of $x\in A$

Familiar examples:

The classic example and the triangle inequality does not converge uniform, because we can find a value of ε for which the statement does not hold, but it must hold for all $\varepsilon > 0$ to converge uniform.

A useful characterization:

Theorem: consider $f_n : A \to \mathbb{R}$ then: $f_n \to f$ uniformly $\Leftrightarrow \lim_{x \in A} |f_n(x) - f(x)| = 0$ PROOF:

Example:

Preservation of continuity:

Assume $f_n : A \to \mathbb{R}$ satisfies: (1) $f_n \to f$ uniformly on A (2) f_n is continuous at $c \in A$ for all $n \in \mathbb{N}$ Then f is continuous at c Moral: uniform convergence preserves continuity! PROOF: For, $\varepsilon > 0$ there exist: $N \in \mathbb{N}$ s.t. $|f_N(x) - f(x)| < \frac{1}{3}\varepsilon$, for all $x \in A$ $\delta > 0$ s.t. $|x - c| < \delta \Rightarrow |f_N(x) - f_N(c)| < \frac{1}{3}\varepsilon$ If $|x-c| < \delta$ then: $|f(x) - f(c)| = |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) = f(c)|$ $\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| < \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon = \varepsilon$

Example:

The sequence $f_n(x) = x^n$ does NOT uniformly converge to: $f(x) = \begin{cases} 0 \text{ if } x < 1 \\ 1 \text{ if } x \leq 1 \end{cases}$ $1 \text{ of } x = 1$ on the set $A = [0, 1]$ because each f_n continuous at $x = -1$ but lim f not.

CAUCHY CRITERION: Following statements equivalent: The following statements are equivalent: (1) f_n converges uniformly on A (2) for all $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ s.t. $n, m \ge N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \forall x \in A$ PROOF:

uniform convergence preserve differentiability?

Counter example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}} \rightarrow |x|$ uniformly on [-1, 1] Every f_n is differentiable at $x = 0$, but the limit is NOT. Lemma: assume that: $(1) f_n : [a, b] \to \mathbb{R}$ differentiable for all n (2) f'_n converges uniformly on $[a, b]$ (note the prime) (3) $f_n(x_0)$ converges for some $x_0 \in [a, b]$ Then f_n converges uniformly on [a, b] PROOF: for each $\varepsilon > 0$ there exists $N_1, N_2 \in \mathbb{N}$ s.t.: $n, m \ge N_1 \Rightarrow |f'_n(x) - f'_m(x)| < \frac{\varepsilon}{2(b-a)}$, $\forall x \in [a, b]$ and $n, m \ge N_2 \Rightarrow |f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$ Claim: $n, m \ge \max\{N_1, N_2\} \Rightarrow |f_n(x) - f_m(x)| < \varepsilon, \forall x \in [a, b]$ PROOF OF CLAIM: Apply MVT to $g = f_n - f_m$ $g(x) = g(x) - g(x_0) + g(x_0)$ $g(x) = g'(c)(x - x_0) + g(x_0) c$ between x and x_0 Triangle inequality: $|g(x)| \leq |g'(c)| \cdot |x - x_0| + |g(x_0)| = |g'(c)| \cdot (b - a) + |g(x_0)|$ $|f_n(x) - f_m(x)| \leq |f'_n(c) - f'_m(c)| \cdot (b - a) + |f_n(x_0) - f_m(x_0)|$ $|f_n(x) - f_m(x)| \leq \frac{\varepsilon}{2(b-a)} \cdot (b-a) + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Theorem:If:

 $1. f_n : [a, b] \to \mathbb{R}$ differentiable for all n 2. $f'_n \to g$ uniformly on $[a, b]$ 3. $f_n(x_0)$ converges for some $x_0 \in [a, b]$ Then there exists a differentiable $f : [a, b] \to \mathbb{R}$ s.t. $f_n \to f$ uniformly and $f' = g$ Moral: $(\lim f_n)' = \lim (f'_n)$

PROOF:

Theorem at the top of this page:

Proof part 1b:

By using the triangle inequality we find the following 3 parts: $\exists N \in \mathbb{N}$ and $\delta > 0$ s.t.:

is true (because a direct conclusion from a lemma), and therefore the theorem is true. SERIES OF FUNCTIONS: Let $f_n : A \to \mathbb{R}$ and $s_n = f_1 + \ldots + f_n$ then:

(-) $\sum_{n=1}^{\infty} f_n \to f$ poinstwise means $s_n \to f$ pointwise. (-) $\sum_{n=1}^{\infty} f_n \to f$ uniformly means $s_n \to f$ uniformly.

CAUCHY CRITERION: the following statements are equivalent:

(1) $\sum_{n=1}^{\infty} f_n$ converges uniformly on A (2) for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $n > m \ge N \Rightarrow |f_{m+1}(x) + \ldots + f_n(x)| < \varepsilon$ for all $x \in A$ PROOF: Follows from: $|s_m(x) - s_n(x)| = |f_{m+1}(x) + ... + f_n(x)|$ WEIERSTRASS TEST: assume that:

 $(1)|f_n(x)| \leq C_n$ for all $x \in A$ $(2)\sum_{n=1}^{\infty}C_n$ converges. Then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A $n=1$
PROOF: for all $x \in A$ we have: $|s_n(x) - s_m(x)| = |f_{m+1}(x) + \ldots + f_n(x)| \leq C_{m+1} + \ldots + C_n$ Cauchy criterion for $\sum_{n=1}^{\infty} C_n \Rightarrow$ Cauchy criterion for s_n PRESERVATION OF CONTINUITY: assume: (1) $\sum_{n=1}^{\infty} f_n \to f$ uniformly on A $(2) f_N$ is continuous on A for all n Then f is continuous on A PROOF: $s_n = f_1 + \ldots + f_n$ is continuous on A for all $n \in \mathbb{N}$ $s_n \to f$ uniformly $\to f$ is continuous on A PRESERVATION OF DIFFERENTIABILITY: Assume: (1) $f_n : [a, b] \to \mathbb{R}$ is differentiable for all n $(2)\sum_{n=1}^{\infty} f'_n \to g$ uniformly on $[a, b]$ (3) $\sum_{n=1}^{\infty} f_n(x_0)$ converges for some $x_0 \in [a, b]$

Then there exists a differentiable $f : [a, b] \to \mathbb{R}$ s.t. $\sum_{n=1}^{\infty} f_n \to f$ uniformly and $f' = \sum_{n=1}^{\infty} f_n$ $\sum_{n=1} f'_n$

Example:

Same graphs as before:

1:

Claim: $f_n(x)$; = $\frac{1}{2^n}h(2^n x) \Rightarrow |f_n(x)| \leq \frac{1}{2^n}$ for all $x \in \mathbb{R}$ $\sum_{i=1}^{\infty}$ $n=0$ $\frac{1}{2^n}$ converges. Weierstrass test $\Rightarrow \sum^{\infty}$ $\sum_{n=0}^{\infty} f_n$ converges uniformly on R f_n continuous on $\mathbb{R} \to \infty$ for all $n \in \mathbb{N} \Rightarrow f$ continuous on \mathbb{R} **2:** $f(x) = \sum_{n=0}^{\infty}$ $\frac{\sin(2^n x)}{3^n}$ is differentiable on every [−c, c] $\binom{(-)}{n}(x) = \sin(2^n x)/3^n$ is differentiable for $n \in \mathbb{N}$ (-) $|f'_n(x)|$ ≤ $(\frac{2}{3})^n$, ∀x ∈ [-c, c] Weierstrass \Rightarrow $\sum_{n=1}^{\infty}$ $\sum_{n=1} f'_n(x)$ converges uniformly on $[-c, c]$ (-) $\sum_{n=1}^{\infty} f_n(x)$ converges at $x = 0$ Apply term-wise differentiability Theorem.

POWER SERIES GENERAL FORM: $\sum_{n=1}^{\infty}$ $\sum_{n=0} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$ Pointwise convergence thm: $\sum_{n=0}^{\infty} a_n x^n$ converges at $c \neq 0 \Rightarrow \sum_{n=0}^{\infty} a_n$ $\sum_{n=0}^{\infty} |a_n x^n|$ converges for $|x| < |c|$ PROOF: $\sum_{i=1}^{\infty}$ $\sum_{n=0} a_n c^n$ converges $\Rightarrow \lim a_n c^n = 0$ \Rightarrow $(a_n c^n)$ is bounded. \Rightarrow $\exists M > 0$ s.t. $|a_n c^n| \leq M, \forall n \in \mathbb{N}$ $|a_n x^n| = |a_n (c \cdot \frac{x}{c})^n| = |a_n c^n| \cdot \left| \frac{x}{c} \right|$ $\vert n \vert \leq M \cdot \vert \frac{x}{c} \vert$ $n \in \mathbb{N}$ Note $|x| < |c| \Rightarrow \left|\frac{x}{c}\right| < 1$ Therefore we see that $|a_n x^n| \leq M$ So Apply comparison test: $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} M \left| \frac{x}{c} \right|$ ⁿ converges ⇒ $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} |a_n x^n|$ converges. RADIUS OF CONVERGENCE: R when $R > 0$ $(-)|x| < R \Rightarrow PS$ converges at x $\left(\cdot\right)|x| > R \Rightarrow \text{PS diverges at } x \text{ Computing the radius.}$ (-) ROOT TEST: $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists then $R = \frac{1}{L}$ (-) RATIO TEST: $L = \lim_{h \to 0} \left| \frac{1}{h} \right|$ a_{n+1} $\frac{n+1}{a_n}$ exists, then $R=\frac{1}{L}$ $(L) L = 0$? then $R = \infty$ PROOF: $\lim \sqrt[n]{|a_n x^n|} = L|x|, \forall x \in \mathbb{R}$ fixed. For all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $n \ge N \Rightarrow \left| \sqrt[n]{|a_n x^n|} - L|x| \right| < \varepsilon$ $\Rightarrow L|x| - \varepsilon < \sqrt[n]{|a_n x^n|} < L|x| + \varepsilon$ \Rightarrow $(L|x| - \varepsilon)^n < |a_n x^n| < (L|x| + \varepsilon)^n$ $x < \frac{1}{L}$
Pick $\varepsilon < 1 - L|x|$ pick $\varepsilon < L|x| - 1$ $L|x| + \varepsilon < 1 \Rightarrow \sum_{n=1}^{\infty}$ $\sum_{n=0}$ $(L|x| + \varepsilon)^n$ converges. $\left| L|x| - \varepsilon > 1 \Rightarrow (L|x| - \varepsilon)^n$ unbounded. $\Rightarrow \sum^{\infty}$ $\sum_{n=0} |a_n x^n|$ converges. $\Rightarrow |a_n x^n|$ unbounded. \Rightarrow $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n x^n$ converges. $\Rightarrow \sum_{n=0}^{\infty}$ $\sum_{n=0} a_n x^n$ diverges

Example:

Theorems:

BEWARE OF THE BOUNDARY POINTS:

Example Radius at $x = -R$ at $x = R$ $\overline{\sum}$ $\sum_{n=1} x^n$ $R=1$ divergent divergent. $\sum_{i=1}^{\infty}$ $n=1$ $\frac{1}{n}x^n$ $R=1$ convergent divergent $\sum_{i=1}^{\infty}$ $n=1$ $(-1)^n$ $\frac{1}{n}x^n$ $R=1$ divergent convergent. $\sum_{i=1}^{\infty}$ $\frac{1}{n^2}x^n$ $R=1$ convergent convergent

 $n=1$ Theorem uniform convergence: $\sum_{n=0}^{\infty} |a_n c^n|$ convergent $\Rightarrow \sum_{n=0}^{\infty}$ $\sum_{n=0} a_n x^n$ uniformly convergent on $[-|c|, |c|]$ PROOF: For $|x| \le |c|$ we have: $|a_n x^n| = |a_n| \cdot |x|^n \le |a_n| \cdot |c|^n = |a_n c^n| =: M_n$ Apply Weierstrass' test: $\sum_{n=0}^{\infty} M_n$ convergent $\Rightarrow \sum_{n=0}^{\infty}$ $\sum_{n=0} a_n x^n$ uniformly convergent on $[-|c|, |c|]$ Continuity of the limit: Corollary: $\sum_{n=0}^{\infty} a_n x^n$ continuous function on $(-R, R)$ Proof: Take $x_0 \in$ $(-R, R)$ and $|x_0| < c < d < R$ then: PS convergent at $d \Rightarrow PS$ absolutely convergent at c \Rightarrow PS uniformly convergent on $[-c, c] \Rightarrow$ PS continuous on $[-c, c]$ Each $a_n x^n$ is continuous! \Rightarrow PS continuous at $x_0 \Rightarrow$ PS continuous on $(-R, R)$ CONTINUITY OF THE LIMIT (2) : $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} |a_n R^n|$ convergent $\Rightarrow \sum_{n=0}^{\infty}$ $\sum_{n=0} a_n x^n$ uniformly convergent on $[-R, R]$ In particular, the PS is continuous on $[-R, R]$ What if convergence is conditional at $X = R$ or $x = -R$ **Lemma:** if $s_n = u_1 + ... + u_n$ then: $\sum_{k=1}^n u_k v_k = s_n v_{n+1} + \sum_{k=1}^n u_k v_k$ $\sum_{k=1} s_k (v_k - v_{k+1})$ Proof: Set $s_0 = 0$ then: $u_k v_k = (s_k - s_{k-1})v_k = s_k(v_k - v_{k+1}) + s_k v_{k+1} - s_{k-1}v_k, \forall k = 1, ..., n$ These last two terms are called the telescoping terms. $\sum_{n=1}^{\infty}$ $\sum_{k=1}^{n} u_k v_k = s_n v_{n+1} + \sum_{k=1}^{n}$ $\sum_{k=1} s_k (v_k - v_{k+1})$ Abel's **Lemma:** Assume that (u_n) and (v_n) satisfy: $(1)|u_1 + \ldots + u_n| \leq C$, $\forall n \in \mathbb{N}$ (2) $0 \leq v_{n+1} \leq v_n$, $\forall n \in \mathbb{N}$ Then | $\sum_{n=1}^{\infty}$ $\sum_{k=1}^n u_k v_k$ $\leq Cv_1, \forall n \in \mathbb{N}$ PROOF: $s_n = u_1 + \ldots + u_1$ so $\left| \sum_{k=1}^n u_k v_k \right| = \left| s_n v_{n+1} + \sum_{k=1}^n \right|$ $\left|\sum_{k=1}^n u_k v_k\right| \leq |s_n| v_{n+1} + \sum_{k=1}^n |s_k| (v_k)$ $\sum_{k=1}^{n} s_k (v_k - v_{k+1})$ $\sum_{n=1}^{\infty}$ $\sum_{k=1}^n u_k v_k$ $\leq |s_n| v_{n+1} + \sum_{n=1}^n$ $\sum_{k=1}^{\infty} |s_k|(v_k - v_{k+1})$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\sum_{n=1}^{\infty}$ $\sum_{k=1}^n u_k v_k$ $\leq C(v_{n+1} + \sum_{n=1}^{n}$ $\sum_{k=1} (v_k - v_{k+1}) = Cv_1$

Abel's theorem:

(1) PS converges at $x = R \Rightarrow$ PS converges uniformly on [0, R]

(2) PS converges at $x = -R \Rightarrow PS$ converges uniformly on $[-R, 0]$ PROOF: only part 1:

for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ s.t. $n > m \ge N \Rightarrow$ $\begin{array}{c} \hline \end{array}$ $\sum_{n=1}^{\infty}$ $\sum_{k=m+1} a_k R^k$ $< \varepsilon$ take any $x \in [0, R]$ and set: $v_k = (\frac{x}{R})^k$, then: $u_k = \begin{cases} a_k R^k \text{ if } k \geq m+1 \\ 0 \text{ otherwise} \end{cases}$ 0 otherwise Abel's lemma \rightarrow Cauchy criterion: $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $\sum_{n=1}^{\infty}$ $\sum_{k=m+1}^{n} a_k x^k$ $=\Bigg\}$ $\sum_{n=1}^{\infty}$ $\sum_{k=1}^n y_k v_k$ $<\varepsilon\cdot\frac{x}{R}\leq\varepsilon\,\forall x\in[0,R]$

Differentiation theorem: $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n x^n$ convergent on $(-R, R) \Rightarrow \sum_{n=0}^{\infty}$ $\sum_{n=0}$ na_n x^{n-1} convergent on $(-R, R)$ PROOF: $|c|$ < 1 then there exists $M > 0$ s.t. $|nc^{-1}|$ ≤ M , $\forall n \in \mathbb{N}$ Let $|x| < t < R$, then: $|na_nx^{n-1}| = \frac{1}{t}(n|\frac{x}{t}|)$ $\left| \sum_{n=1}^{n-1} \right| \left| a_n t^n \right| \leq \frac{M}{t} \left| a_n t^n \right|$ Apply comparison test. Differentiation term by term: For any PS with radius R we have: $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty}$ $\sum_{n=0} na_n x^{n-1}, \forall x \in (-R, R)$ PROOF: let $0\leq c < R\,$ then: $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges uniformly on $[-c, c]$ so $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = 0$ Now apply Term-wise differentiability Theorem.

Examples:

1:
\nfor all
$$
x \in (-1, 1)
$$
 we have:
\n
$$
\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}
$$
\n
$$
\sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}
$$
\nTaking $x = \frac{1}{4}$ gives:
\n
$$
\sum_{n=1}^{\infty} \frac{n}{4^n} = \frac{1}{4} \sum_{n=0}^{\infty} n(\frac{1}{4})^{n-1} = \frac{1}{4} \cdot \frac{1}{(1-\frac{1}{4})^2} = \frac{4}{9}
$$
\n2:
\nFor all $x \in (-1, 1)$ we have:
\n
$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n \to f(x)
$$
\n
$$
\sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1} \to f'(x) = \frac{1}{1+x} \Rightarrow f(x) = \log |1 + x| + C
$$
\nNote that
\n $(-) C = f(0) = 0$ so $f(x) = \log |1 + x|$
\n $(-)$ Abel's Theorem: \Rightarrow PS in the original equation uniformly on [0, 1]
\n $(=)$ Hence, PS in original equation is continuous at $x = 1$
\n
$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \lim_{x \to 1} f(x) = f(1) = \log(2)
$$
\nConclusion: $\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

TAYLOR SERIES of f around $x = 0$: given by: $\sum_{n=0}^{\infty}$ $f^{(n)}(0)$ $\frac{n!}{n!}x^n$ PARTIAL SUM: $s_n(x) = \sum_{k=0}^{n}$ $f^{(k)}(0)$ $\frac{\partial^{\nu}(0)}{\partial k!}x^l$ REMAINDER: $E_n(x) = f(x) - s_n(x)$ **Lemma:** t variable, x fixed. Assume that: $\left(\frac{\cdot}{x}\right)$ and $h(t)$ is $n+1$ times differentiable on $[0, x]$ $(-) h(x) = 0$ and $h^{(k)}(0) = 0$ for all $k = 0, ..., n$ Then $h^{(n+1)}(c) = 0$ for some $c \in (0, x)$ PROOF: Repeated application Rolle's theorem: $h(0) = h(x) \Rightarrow h'(c_1) = 0$ for some $c_1 \in (0, x)$ $h'(0) = h'(c_1) \Rightarrow h''(c_2) = 0$ for some $c_2 \in (0, c_1)$. . . $h^{(n)}(0) = h^{(n)}(c_n) \Rightarrow h^{(n+1)}(c_{n+1}) = 0$ for some $c_{n+1} \in (0, c_n)$ Theorem: for $n \in \mathbb{N}$ and $x > 0$, there exists $c \in (0, x)$ s.t.: $E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ Note: c depends on both n and $x!$ PROOF: Fix $x > 0$ and consider: $h(t) = f(t) - s_n(t) - \left(\frac{f(x) - s_n(x)}{x^{n+1}}\right)t^{n+1}$ note that $h(x) = 0$ and $h^{(k)}(0) = 0$ for $k = 0, ..., n$ Previous lemma gives $c \in (0, x)$ s.t.: $f^{(n+1)}(c) - s_n^{(n+1)}(c) - (n+1)!(\frac{f(x) - s_n(x)}{x^{n+1}}) = 0$ We can claim that $s_n^{(n+1)}(c) = 0$ $f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$ TAYLOR SERIES of f around $x = a: \sum_{n=1}^{\infty} a_n$ $n=0$ $f^{(n)}(a)$ $\frac{f'(a)}{n!}(x-a)^n$ LAGRANGE REMAINDER: for $x > a$ exists $c \in (a, x)$ s.t. $E_n(x) = f(x) - s_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

Examples:

Euler:

Taylor series for $f(x) = e^x$

When we make a graph of these taylor series, we see that the taylor series approxiomate the sinfunction better for every higher value of n

Natural logarithm:

 $f(x) = \ln(1+x) \Rightarrow f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n} \forall n \in \mathbb{N}$ For $x > 0$ exists $c \in (0, x)$ s.t.: $\ln(1 + x) = \sum_{n=1}^{\infty} \frac{1}{n}$ $k=1$ $(-1)^{k+1}$ $\frac{(n+1)^{k+1}}{k}x^{k} + \frac{(-1)^{n}}{(n+1)(1+c)^{n+1}}x^{n+1}$ $arctan(x)$ On [-1, 1] we have $arctan(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots$ The convergence is uniform on [0, 1] but not on $[-1, 0]$ For $x = 1$ we get $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ Counterexample: $f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ e^{-x^2} if $x \neq 0$ $\Rightarrow f^n(0) = 0 \forall n \in \mathbb{N}$
0 if $x = 0$

The Taylor series of f does not converge to f

Applications:

 \int 0 $\frac{e^x-1}{x}dx$ ≈ 1.3179 accoarding Wolfram Alpha. Approximating square roots by an example:
 \sqrt{x} centered at $x = 1\sqrt{x} = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2 + E_3(x)$ \sqrt{x} centered at $x = 1 \sqrt{x} - 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1) + E_3(x)$
This gives $\sqrt{5} \approx 1$ which is not true.
Centered at $x = 2\sqrt{x} = 2 + \frac{1}{4}(x - 4) - \frac{1}{64}(x - 4)^2 + E_3(x)$
Then $\sqrt{5}$ gives 2.234375, which is really close to

Approximating integrals:

For
$$
x > 0
$$
 exists $c \in (0, x)$ s.t.:
\n
$$
e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^c}{(n+1)!} x^{n+1}
$$
\n
$$
\frac{e^x - 1}{x} = \sum_{k=1}^{n} \frac{x^{k-1}}{k!} + \frac{e^c}{(n+1)!} x^n
$$
\n
$$
\int_{0}^{1} \frac{e^x - 1}{x} dx = \sum_{k=1}^{n} \frac{1}{k!k} + \int_{0}^{1} \frac{e^c}{(n+1)!} x^n dx
$$

Upper bound Right part: $R_n = \int_0^1$ θ $\frac{e^c}{(n+1)!}x^n dx$

$$
\int_{0}^{1} \frac{e^{c}}{(n+1)!} x^{n} dx < \int_{0}^{1} \frac{3}{(n+1)!} x^{n} dx = \frac{3}{(n+1)!(n+1)}
$$

When we fill it in again we see that:
$$
\int_{0}^{1} \frac{e^{x} - 1}{x^{n}} dx \approx \sum_{n=1}^{\infty} \frac{1}{n!}
$$

e fill it in again we see that:
$$
\int_{0}^{1} \frac{e^x - 1}{x} dx \approx \sum_{k=1}^{5} \frac{1}{k!k} = 1.31763...
$$
 Where $(R_5 < 0.001)$

PARTITION: a partition of $[a, b]$ is a set of the form: $P = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\}$ REFINEMENTS: Q refinement of P if $P \subseteq Q$ provided that P and Q partitions same interval.

Let $f : [a, b] \to \mathbb{R}$ be bounded and P be a partition of $[a, b]$ then: LOWER SUM of $f \text{ w.r.t } P: m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ Approximate area below graph of $f L(f, P) = \sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} m_k (x_k - x_{k-1})$ UPPER SUM of f w.r.t $P: M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ Approximate area above graph of f $U(f, P) = \sum_{n=1}^{\infty}$ $\sum_{k=1} M_k(x_k - x_{k-1})$

 $L(f, P) \le U(f, P)$ for any partition P of [a, b]

Example:

1: $P_1 = \{0, \frac{1}{4}, \frac{1}{2}, 1\}$ partition of $[0, 1]$ $P_2 = \{0, 1, 2\} \text{ NOT partition of } [0, 1]$ $P_3 = \{0, \frac{1}{2}\}\text{NOT partition of }[0, 1]$ 2: $P = \{0, \frac{1}{2}, 1\}$ partition [0, 1] $Q_1 = \{-\frac{1}{4}, \frac{1}{2}, \frac{9}{10}, 1\}$ refines P $Q_2 = \{0, \frac{1}{2}, 1, 2\}$ does not refine P because $2 \notin [0, 1]$

Relation upper and lower sums:

Lemma: if $P \subseteq Q$ then: (-) $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$ (-) $U(f, Q) - L(f, Q) ≤ U(f, P) - L(f, P)$ PROOF: m'

Only proof upper sum, lower soom works the samae way.

Refine P by adding one point $z \in [x_{k-1}, x_k]$ $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ $m'_k = \inf\{f(x) : x \in [z, x_k]\}$ $m_k^{\tilde{\theta}} = \inf\{f(x) : x \in [x_{k-1}, z]\}$ We know that $A \subset B$ then inf $A > \inf B$ $m_k(x_k - x_{k-1}) = m_k(x_k - z) + m_k(z - xk - 1) \le m'_k(x_k - z) + m''_k(z - x_{k-1})$ Then proceed by induction **Lemma:** for any two partitions P_1 and P_2 we have: $L(f, P_1) \leq U(f, P_2)$ PROOF: $Q = P_1 \cup P_2$ then $P_1, P_2 \subset Q$, so: $L(f, P_1) \leq L(f, Q) \leq U(f, Q) \leq U(f, P_2)$

Best possible approximate area and riemann integral:

Assume $f : [a, b] \to \mathbb{R}$ is bounded. Let P denote the collections of all partitions fo [a, b] $U(f) = \inf \{ U(f, P) : P \in \mathcal{P} \} \quad L(f) = \sup \{ L(f, P) : P \in \mathcal{P} \}$ **Lemma:** $L(f) \leq U(f)$ PROOF: $L(f, P_1) \leq U(f, P_2)$ for all $P_1, P_2 \in \mathcal{P}$ $L(f) \leq U(f, P_2)$ for all $P_2 \in \mathcal{P}(\text{take sup over } P_1)$ $L(f) \leq U(f)$ (Take inf over P_2)

RIEMANN INTEGRABLE: bounded function $f : [a, b] \to \mathbb{R}$ and $U(f) = L(f)$ Notation: R b a $f = U(f) = L(f)$ or \int_a^b a $f(x)dx = U(f) = L(f)$

Integrability:

Theorem: The following statements are equivalent: (1) f is integrable. (2) or all $\varepsilon > 0$ there exists a partition P_{ε} s.t. $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ PROOF: $(2) \Rightarrow (1)$ $U(f) \leq U(f, P_{\varepsilon})$ $L(f) \geq L(f, P_{\varepsilon})$ $\Big\} \Rightarrow U(f) - L(f) \leq U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ This holds for all $\varepsilon > 0$ so $U(f) = L(f)$ $(1) \Rightarrow (2)$ let $\varepsilon > 0$ and choose P_1 and P_2 such that: $L(f, P_1) > L(f) - \frac{1}{2}\varepsilon$ and $U(f, P_2) < U(f) + \frac{1}{2}\varepsilon$ Because of the characterizations of infimum and supremium. Let $P_{\varepsilon} = P_1 \cup P_2$ then: $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) \leq U(f, P_2) - L(f, P_1) = [U(f, P_2) - U(f)] + [L(f) - L(f, P_1)] < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$ So $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$ **Continuous functions:** f continuous on $[a, b] \Rightarrow$ f integrable on $[a, b]$ PROOF: f is uniformly continuous on $[a, b]$ For all $\varepsilon > 0$ there exists $\delta > 0$ s.t. $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}$ for all $x, y \in [a, b]$ Let P be a partition such that $x_k - x_{k-1} < \delta$ for all $k = 1, ..., n$ There exists $y_k, z_k \in [x_{k-1}, x_k]$ s.t. $f(y_k) = M_k$ and $f(z_k) = m_k$ Note: $|y_k - z_k| < \delta \Rightarrow M_k - m_k = f(y_k) - f(z_k) < \frac{\varepsilon}{b_k}$ Note: $|g_k - z_k| > 0 \to m_k - \ln(k-1)(g_k) - \ln(k-1)(g_k) > 0$
 $U(f, P) - L(f, P) = \sum_{k=0}^{n} (M_k - m_k)(x_k - x_{k-1}) < \frac{\varepsilon}{h - a}$ $\sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) < \frac{\varepsilon}{b-a} \sum_{k=1}^{n}$ $\sum_{k=1} (x_k - x_{k-1})$ $=\frac{\varepsilon}{b-a}\cdot(x_n-x_0)=\frac{\varepsilon}{b-a}(b-a)=\varepsilon$ So $U(f, P) - L(f, P) < \varepsilon$ So integrable. Example:

 $f(x) = \begin{cases} 1 \text{ if } x \neq 1 \\ 0 \text{ if } x = 1 \end{cases}$ $\lim_{x \to 1}$ is integrable on [0, 2] Let $0 < \varepsilon < 1$ and take the partition: $P = \{0, 1 - \frac{1}{3}\varepsilon, 1 + \frac{1}{4}\varepsilon, 2\}$ $U(f, P) = 2$ and $L(f, P) = 2 - \frac{1}{2}\varepsilon$ so $U(f, P) - L(f, P) < \varepsilon$ 2: $f(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \in \mathbb{Q} \end{cases}$ $\lim_{\theta \to 0} \epsilon \in \mathbb{Q}$ is not integrable on [0, 1] Let P be any partition of [0, 1] then: $[x_k, x_{k-1}] \cap \mathbb{Q}^c \neq \emptyset \Rightarrow m_l = 0$ for all $k = 1, \ldots, n \Rightarrow L(f, P) = 0$ $[x_k, x_{k-1}] \cap \mathbb{Q} \neq \emptyset \Rightarrow M_k = 1$ for all $k - 1, \ldots, n \Rightarrow U(f, P) = 1$ So $L(f, P) \neq U(f, P)$ and therefore not differentiable. 3: $f(x) = \begin{cases} x \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \neq 0 \end{cases}$ $\lim_{\delta \to 0} \epsilon \ll 0$ is NOT integrable on [0, 1] for any partition P of [0, 1] we have: $U(f, P) - L(f, P) =$ $\sum_{n=1}^{\infty}$ $\sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} x_k(x_k - x_{k-1}) > \sum_{k=1}^{n}$ $k=1$ $\frac{1}{2}(x_k+x_{k-1})(x_k-x_{k-1}) = \sum_{k=1}^n$ $\frac{1}{2}(x_k^2 - x_{k-1}^2) = \frac{1}{2}$

Increasing functions:

Any increasing function $f : [a, b] \to \mathbb{R}$ integrable. For any partition of $[a, b]$ we have: $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} = f(x_k)$ $m_k = \inf\{f(x) : x \in [x_{k-1}, x_l]\} = f(x_{k-1})$ An equispaced partition P gives: Equispaced: Every interval has the same size. $U(f, P) - L(f, P) = \sum_{n=1}^{n}$ $\sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n}$ $\sum_{k=1} [f(x_k) - f(x_{k-1})]$ $=\frac{(b-a)(f(b)-f(a))}{n}\to 0$ as $n\to\infty$

Example:

Lecture 17:

SPLIT PROPERTY: $f : [a, b] \to \mathbb{R}$ bounded and $c \in (a, b)$ then f integrable on $[a, b] \Leftrightarrow f$ integrable on [a, c] and [c, b]. In that case: \int_a^b a $f = \int_{0}^{c}$ a $f + \int\limits_0^b$ c f **PROOF**

Part 1:

Let $\varepsilon > 0$, and pick a paritition P of $[a, b]$ s.t. $U(f, P) - L(f, P) < \varepsilon$ Let $P_c = P \cup \{c\}$ then: $U(f, P_c) - L(f, P_c) < \varepsilon$ P_c is in fact the original partition where we add the point c Then $Q = P_c \cap [a, c]$ is a partition of $[a, c]$ and: $m := \text{\#intervals in } Q$ $n := #$ intervals in P_c $\} \Rightarrow m < n$ $m < n$ implies: $U(f, Q) - L(f, Q) = \sum_{m=1}^{m}$ $\sum_{k=1}^{m} (M_k - m_k)(x_k - x_{k-1}) \leq \sum_{k=1}^{n}$ $\sum_{k=1} (M_k - m_k)(x_k - x_{k-1}) = U(f, P_c) - L(f, P_c) < \varepsilon$ $\text{So } U(f, P_c) - L(f, P_c) < \varepsilon$, conclusion f integrable on [a, c] Part 2: Let P_1 and P_2 partititions of $[a, c]$ and $[c, b]$ s.t.: $U(f, P_i) - L(f, P_i) < \frac{1}{2}\varepsilon$ for $i = 1, 2$ Then $P = P_1 \cup P_2$ is a partition of [a, b] and: $U(f, P) = U(f, P_1) + U(f, P_2)$ $L(f, P) = L(f, P_1) + L(f, P_2)$ $U(f, P) - L(f, P) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$ Conclusion: f integrable on $[a, b]$ **Part 3:** Let ε and P_1, P_2 be as before: \int_a^b $\int_a^b f \le U(f, P) < L(f, P) + \varepsilon = L(f, P_1) + L(f, P_2) + \varepsilon \le \int_a^c f \le \int_a^c f$ a $f + \int\limits_0^b$ c $f + \varepsilon$ So we can claim: $\int_a^b f \leq \int_a^c f + \int_a^b f$ Because: $x \leq y + \varepsilon$, for $\varepsilon > 0$ then $x \leq y$ Part 4: Let $\varepsilon > 0$ and P_1, P_2 be as before: \int a $f + \int_a^b$ $\int_{c}^{s} \leq U(f, P_1) + U(f, P_2) < L(f, P_1) + f, P_2 + \varepsilon = L(f, P) + \varepsilon \leq \int_{a}^{b} f + \varepsilon$ So we have \int_{0}^{c} a $f + \int\limits_0^b$ c \leq ∫ a f And because we have: \int_a^b a $f \leq \int_{0}^{c}$ a $f + \int_a^b$ c f And: \int_a^c a $f + \int_a^b$ c $≤$ ^b a f we proved it.

Integrable, algebraic properties and order properties:

 f integrable on a closed interval $[a, b]$: \int_a^b a $f = -\int_a^a$ b f and \int_a^c c $f = 0$ for all $c \in [a, b]$ Corollary: regardless order a, b, c we have: $\int_{a}^{b} f = \int_{a}^{c} f + \int_{b}^{b}$ Algebraic properties: If f, g integrable on $[a, b]$ then: c f 1. $f + g$ integrable and \int_a^b a $(f+g) = \int_a^b$ a $f + \int\limits_0^b$ a g 2. kf integrable and \int_a^b a $kf = k \int_0^b$ a f for all $k \in \mathbb{R}$ Order properties: (1) f integrable on [a, b] then $m \le f(x) \le M \Rightarrow m(b-a) \le \int_a^b$ a $f \leq M(b-a)$ (2) f, g integrable on [a, b] and $f(x) \leq g(x)$ for all $x \in [a, b]$ then \int_a^b a $f \leq \int_{0}^{b}$ a g (3) f integrable on [a, b] then $|f|$ integrable and \int_a^b a f \leq ∫ a $|f|$ PROOF: (1) For all partitions of [a, b], we have $L(f, P) \leq \int_{a}^{b} f \leq U(f, P)$ a Taking $P = \{a, b\}$ gives: $U(f, P) = (b - a) \cdot \sup\{f(x) : x \in [a, b]\} \le M(b - a)$ $L(f, P) = (b - a) \cdot \inf\{f(x) : x \in [a, b]\} \ge m(b - a)$ (2) Since $0 \leq g(x) - f(x)$ for all $x \in [a, b]$ we have: $0 \cdot (b - a) \leq \int_a^b$ a $(g - f) \Rightarrow 0 \leq \int_a^b$ a $g - \int\limits_0^b$ a f (3) P any partition of [a, b] and: $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ $M'_k = \sup\{|f(x)| : x \in [x_{k-1}, x_k]\}$ $m'_k = \inf\{|f(x)| : x \in [x_{k-1}, x_k]\}$ Claim: $M_k' - m_k' \leq M_k - m_k$ For all $\varepsilon > 0$ exists $y, z \in [x_{k-1}, x_k]$ s.t. $M'_k - \frac{1}{2}\varepsilon < |f(y)|$ $m'_k + \frac{1}{2}\varepsilon > |f(z)|$ $M'_k - m'_k - \varepsilon < |f(y)| - |f(z)| \le |f(y) - f(z)| \le M_k - m_k \text{ so } M'_k - m'_k \le M_k - m_k$ $U(|f|, P) - L(|f|, P) = \sum_{n=1}^{n}$ $k=1$ $(M'_k - m'_k)(x_k - x_{k-1}) \leq \sum_{k=1}^{n}$ $\sum_{k=1} (M_k - m_k)(x_k - x_{k-1}) = U(f, P) - L(f, P) < \varepsilon$ Hence f integrable \Rightarrow |f| integrable.

$$
-|f(x)| \le f(x) \le |f(x)| \Rightarrow -\int_a^b |f| \le \int_a^b f \le \int_a^b |f| \Rightarrow \left|\int_a^b f\right| \le \int_a^b |f|
$$

The fundamental theorem

Part 1:

Assume that: (1) f is integrable on [a, b] (2) F differentiable on [a, b] and $F'(x) = f(x), \forall x \in [a, b]$ Then $\int_a^b f = F(b) - F(a)$ $\mathbf{Part} \ \overset{a}{\mathbf{2}}\mathbf{:}$ Let f integrable on $[a, b]$ and define: $F(x) = \int_a^x F(t)dt$ where $x \in [a, b]$ Then: (1) F uniformly continuous on $[a, b]$ (2) If f is continuous at c then F is differentiable at c and $F'(c) = f(c)$

Proof part 1:

Let *P* be any partition of
$$
[a, b]
$$
:
\n
$$
F(b) - F(a) = \sum_{k=1}^{n} [F(x_k) - F(x_{k-1})]
$$
\nBecause: $F(b) - F(a) = F(x_n) - F(0)$
\nMVT where $t_k \in (x_{k-1}, x_k)$:
\n
$$
\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1}) < \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = U(f, P)
$$
\n
$$
F(b) - F(A) \ge L(f, P)
$$
 by similar proof, so we have:
\n
$$
L(f, P) \le F(b) - F(a) \le U(f, P)
$$
\nTaking sup/inf over all partitions gives:
\n
$$
L(f) \le F(b) - F(a) \le U(f)
$$
\nSince *f* integrable, it follows that:
\n
$$
L(f) = U(f) = F(b) - F(a)
$$

PROOF PART 2: Statement 1: since f integrable on [a, b] there exists $M > 0$ s.t.: $|f(x)| \leq M \forall x \in [a, b]$ We can not compute integrals of unbounded functions so that is the reason we can say that. If $x, y \in [a, b]$ with $x \geq y$ then: $|F(x) - F(y)| =$ $\begin{array}{c} \hline \rule{0pt}{2.2ex} \\ \rule{0pt}{2.2ex} \end{array}$ \int \overline{y} $f(t)dt$ $\leq \int_0^x$ \overline{y} $|f(t)|dt \leq M|x-y|$

For given $\varepsilon > 0$ take $\delta = \frac{\varepsilon'}{M}$ So therefore, F uniformly continuous on $[a, b]$ Statement 2: for $x \neq c$ we have:

 $\frac{F(x)-F(c)}{x-c} - f(c) = \frac{1}{x-c} \int$ c $f(t)dt - f(c) = \frac{1}{x-c} \int_0^x$ c $f(t) - f(c)dt$ Let $\varepsilon > 0$ be arbitrary and pick $\delta > 0$ s.t.: $|x-c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ Since $|t - c| \le |x - c| < \delta$ it follows: $\frac{F(x)-F(c)}{x-c} - f(c) = \frac{1}{|x-c|}$ \int c $f(t) - f(c)dt$ $\leq \frac{1}{|x-c|}|x-c|\cdot \varepsilon = \varepsilon$ $\mathbf{S\mathrm{o}}\vert$ $\frac{F(x)-F(c)}{x-c} - f(c)$ < ε